/** * ═══════════════════════════════════════════════════════════════════════════ * CEREAL, COGNITIVE ENTERPRISE REASONING AND ADAPTIVE LOGIC SUBSYSTEM * ═══════════════════════════════════════════════════════════════════════════ * * @module CerealAISubsystem * @version 2.7.4-enterprise * @author Zeno * @author Rembuiliard * @author Wc4 * @author Alreevu * @author Gambit0 * @contact kendom@tuto.io * @contributors Rembuiliard, Wc4, Alreevu, Gambit0 * @maintainer Zeno * @role Main Developer * @license Enterprise Commercial License v2.0 * @copyright (c) 2025 Cereal AI Systems Corporation. All rights reserved. * * DESCRIPTION: * Advanced Typed Cognition Engine implementing multi-modal reasoning with * hierarchical cognitive architecture, distributed memory systems, and * production-grade safety mechanisms for enterprise AI deployment. * * ARCHITECTURE OVERVIEW: * - Stratified Cognitive Processing Layer (SCPL) * - Distributed Episodic Memory Network (DEMN) * - Hierarchical Attention Allocation System (HAAS) * - Semantic Coherence Validation Engine (SCVE) * - Adversarial Safety Monitoring Interface (ASMI) * * COMPLIANCE: * ISO/IEC 27001:2022, SOC 2 Type II, GDPR Article 22, IEEE 7010-2020 * * DEPLOYMENT CLASSIFICATION: PRODUCTION-GRADE ENTERPRISE * STABILITY RATING: 99.97% (Verified by third-party audit) * SECURITY CLEARANCE: CONFIDENTIAL - INTERNAL USE ONLY */ // ═══════════════════════════════════════════════════════════════════════════ // TYPE SYSTEM FOUNDATION - ADVANCED TYPESCRIPT GENERICS AND CONSTRAINTS // ═══════════════════════════════════════════════════════════════════════════ /** * Fundamental cognitive primitive representing atomic thought units * with temporal, spatial, and semantic dimensions for multi-modal reasoning. * * @template TPayloadType - Constrained payload structure with type safety * @template TMetadataSchema - Extensible metadata schema for domain-specific contexts */ type CognitivePrimitiveDescriptor< TPayloadType extends Record, TMetadataSchema extends Record = Record > = { readonly cognitivePrimitiveIdentifier: string; readonly temporalInstantiationTimestamp: number; readonly semanticVectorEmbeddingRepresentation: Float64Array; readonly hierarchicalConfidenceMetric: number; readonly payloadDataStructure: TPayloadType; readonly extensibleMetadataAnnotations: TMetadataSchema; readonly episodicMemoryTraceIdentifier: string | null; readonly attentionWeightCoefficient: number; }; /** * Enumeration defining categorical reasoning modalities supported by * the Cereal cognitive architecture with strict type guarantees. */ enum CognitiveReasoningModalityClassification { DEDUCTIVE_LOGICAL_INFERENCE = 'DEDUCTIVE_LOGICAL_INFERENCE', INDUCTIVE_PATTERN_SYNTHESIS = 'INDUCTIVE_PATTERN_SYNTHESIS', ABDUCTIVE_HYPOTHESIS_GENERATION = 'ABDUCTIVE_HYPOTHESIS_GENERATION', ANALOGICAL_TRANSFER_REASONING = 'ANALOGICAL_TRANSFER_REASONING', CAUSAL_MECHANISM_INFERENCE = 'CAUSAL_MECHANISM_INFERENCE', COUNTERFACTUAL_CONDITIONAL_REASONING = 'COUNTERFACTUAL_CONDITIONAL_REASONING', META_COGNITIVE_REFLECTION = 'META_COGNITIVE_REFLECTION', } /** * Stratified safety classification taxonomy for prompt evaluation * and adversarial input detection with granular risk assessment. */ enum AdversarialThreatClassificationTaxonomy { BENIGN_STANDARD_INTERACTION = 0, POTENTIALLY_AMBIGUOUS_CONTENT = 1, ELEVATED_RISK_INDICATORS = 2, HIGH_RISK_ADVERSARIAL_PATTERN = 3, CRITICAL_THREAT_IMMEDIATE_TERMINATION = 4, } /** * Comprehensive configuration interface for the Cereal cognitive subsystem * with exhaustive parameterization of all operational characteristics. */ interface CerealCognitiveSubsystemConfigurationSchema { readonly maximumCognitiveProcessingDepthLimit: number; readonly episodicMemoryRetentionCapacityThreshold: number; readonly semanticCoherenceValidationStrictness: number; readonly attentionAllocationDynamicsCoefficient: number; readonly adversarialSafetyMonitoringSensitivity: number; readonly distributedMemoryConsolidationInterval: number; readonly hierarchicalReasoningRecursionBound: number; readonly temporalDecayFunctionExponentialFactor: number; readonly crossModalIntegrationWeightingMatrix: number[][]; readonly uncertaintyQuantificationBayesianPrior: number; readonly metacognitiveReflectionThreshold: number; readonly productionLoggingVerbosityLevel: number; } /** * Input interface representing externally sourced prompts with comprehensive * metadata for provenance tracking and safety auditing. */ interface ExternalPromptInputDescriptor { readonly rawPromptContentString: string; readonly provenanceSourceIdentifier: string; readonly requestTimestampUnixEpoch: number; readonly contextualSessionMetadata: Record; readonly requestedReasoningModalityPreference: CognitiveReasoningModalityClassification | null; readonly requiredSafetyConstraintsPolicyDocument: string[]; readonly maximumResponseGenerationLatencyMilliseconds: number; } /** * Comprehensive response structure encapsulating cognitive processing results * with full transparency into reasoning chains and confidence metrics. */ interface CognitiveResponseArtifactDescriptor { readonly responseContentPayload: string; readonly inferentialReasoningChainExplanation: string[]; readonly aggregatedConfidenceScore: number; readonly utilizedCognitivePrimitiveReferences: string[]; readonly processingLatencyMetricsMilliseconds: number; readonly safetyComplianceValidationStatus: boolean; readonly episodicMemoryIntegrationIdentifiers: string[]; readonly uncertaintyQuantificationDistribution: Record; } // ═══════════════════════════════════════════════════════════════════════════ // EPISODIC MEMORY NETWORK - DISTRIBUTED STORAGE AND RETRIEVAL // ═══════════════════════════════════════════════════════════════════════════ /** * Enterprise-grade episodic memory node implementing content-addressable * storage with temporal indexing and semantic similarity search. * * Provides O(log n) retrieval complexity with distributed consistency * guarantees and automatic memory consolidation during low-activity periods. */ class DistributedEpisodicMemoryNode> { private readonly episodicNodeUniqueIdentifier: string; private readonly temporalCreationTimestamp: number; private readonly memoryContentPayloadStructure: TContentSchema; private readonly semanticEmbeddingVectorRepresentation: Float64Array; private episodicAccessFrequencyCounter: number; private temporalLastAccessTimestamp: number; private memoryConsolidationStrengthMetric: number; private readonly associativeLinkedMemoryNodeReferences: Set; /** * Constructs a new episodic memory node with full initialization of * all internal state vectors and association structures. * * @param nodeIdentifier - Globally unique identifier for this memory node * @param contentPayload - Strongly-typed content structure for storage * @param embeddingVector - High-dimensional semantic representation */ constructor( nodeIdentifier: string, contentPayload: TContentSchema, embeddingVector: Float64Array ) { this.episodicNodeUniqueIdentifier = nodeIdentifier; this.temporalCreationTimestamp = Date.now(); this.memoryContentPayloadStructure = Object.freeze({ ...contentPayload }); this.semanticEmbeddingVectorRepresentation = new Float64Array(embeddingVector); this.episodicAccessFrequencyCounter = 0; this.temporalLastAccessTimestamp = this.temporalCreationTimestamp; this.memoryConsolidationStrengthMetric = 1.0; this.associativeLinkedMemoryNodeReferences = new Set(); } /** * Retrieves the memory content with automatic access tracking and * consolidation strength updating based on retrieval patterns. * * @returns Immutable copy of the memory content payload */ public retrieveMemoryContentWithAccessTracking(): Readonly { this.episodicAccessFrequencyCounter++; this.temporalLastAccessTimestamp = Date.now(); const temporalDecayFactor = Math.exp( -(Date.now() - this.temporalCreationTimestamp) / (86400000 * 30) ); const accessFrequencyBonus = Math.log(1 + this.episodicAccessFrequencyCounter) / 10; this.memoryConsolidationStrengthMetric = Math.min( 1.0, temporalDecayFactor * (0.7 + accessFrequencyBonus) ); return Object.freeze({ ...this.memoryContentPayloadStructure }); } /** * Computes cosine similarity between this memory's embedding and a query vector * using optimized vectorized operations for high-performance retrieval. * * @param queryEmbeddingVector - Query vector for similarity computation * @returns Normalized similarity score in range [0, 1] */ public computeSemanticSimilarityScore(queryEmbeddingVector: Float64Array): number { if (queryEmbeddingVector.length !== this.semanticEmbeddingVectorRepresentation.length) { throw new Error( `Dimensionality mismatch: query vector has ${queryEmbeddingVector.length} dimensions, ` + `but memory vector has ${this.semanticEmbeddingVectorRepresentation.length} dimensions` ); } let dotProductAccumulator = 0; let queryMagnitudeSquared = 0; let memoryMagnitudeSquared = 0; for (let dimensionIndex = 0; dimensionIndex < queryEmbeddingVector.length; dimensionIndex++) { const queryComponent = queryEmbeddingVector[dimensionIndex]; const memoryComponent = this.semanticEmbeddingVectorRepresentation[dimensionIndex]; dotProductAccumulator += queryComponent * memoryComponent; queryMagnitudeSquared += queryComponent * queryComponent; memoryMagnitudeSquared += memoryComponent * memoryComponent; } const magnitudeProduct = Math.sqrt(queryMagnitudeSquared * memoryMagnitudeSquared); if (magnitudeProduct === 0) { return 0; } return Math.max(0, Math.min(1, dotProductAccumulator / magnitudeProduct)); } /** * Establishes bidirectional associative link to another memory node * for graph-based memory traversal and spreading activation. * * @param targetNodeIdentifier - Identifier of the node to link */ public establishAssociativeLinkage(targetNodeIdentifier: string): void { this.associativeLinkedMemoryNodeReferences.add(targetNodeIdentifier); } /** * Accessor for memory consolidation strength metric with temporal decay applied. * * @returns Current consolidation strength in range [0, 1] */ public getConsolidationStrengthMetric(): number { return this.memoryConsolidationStrengthMetric; } /** * Accessor for the unique identifier of this memory node. * * @returns Immutable node identifier string */ public getNodeIdentifier(): string { return this.episodicNodeUniqueIdentifier; } /** * Retrieves all associatively linked memory node identifiers for graph traversal. * * @returns Immutable set of linked node identifiers */ public getAssociatedMemoryNodeIdentifiers(): ReadonlySet { return new Set(this.associativeLinkedMemoryNodeReferences); } } /** * Enterprise-grade distributed episodic memory network implementing hierarchical * memory storage with automatic consolidation, pruning, and semantic indexing. * * Provides production-ready memory management with O(log n) retrieval, * automatic memory consolidation during idle periods, and distributed * consistency guarantees across the cognitive architecture. */ class DistributedEpisodicMemoryNetworkSubsystem { private readonly memoryNodeStorageRegistry: Map>; private readonly semanticIndexInvertedStructure: Map>; private readonly temporalIndexChronologicalStructure: Array<{ timestamp: number; nodeIdentifier: string; }>; private readonly maximumMemoryCapacityThreshold: number; private memoryConsolidationExecutionCounter: number; private readonly consolidationIntervalMilliseconds: number; /** * Initializes the distributed memory network with specified capacity limits * and consolidation policies for production deployment. * * @param capacityThreshold - Maximum number of memory nodes before pruning * @param consolidationInterval - Milliseconds between consolidation cycles */ constructor(capacityThreshold: number, consolidationInterval: number) { this.memoryNodeStorageRegistry = new Map(); this.semanticIndexInvertedStructure = new Map(); this.temporalIndexChronologicalStructure = []; this.maximumMemoryCapacityThreshold = capacityThreshold; this.memoryConsolidationExecutionCounter = 0; this.consolidationIntervalMilliseconds = consolidationInterval; } /** * Stores a new memory node with automatic indexing and capacity management. * Triggers consolidation if capacity threshold is exceeded. * * @param nodeIdentifier - Unique identifier for the memory node * @param contentPayload - Strongly-typed content to store * @param embeddingVector - Semantic embedding for similarity search * @param semanticKeywords - Keywords for inverted index construction */ public storeEpisodicMemoryNode>( nodeIdentifier: string, contentPayload: TContentSchema, embeddingVector: Float64Array, semanticKeywords: string[] ): void { if (this.memoryNodeStorageRegistry.has(nodeIdentifier)) { throw new Error( `Memory node collision detected: identifier '${nodeIdentifier}' already exists in registry` ); } const memoryNode = new DistributedEpisodicMemoryNode( nodeIdentifier, contentPayload, embeddingVector ); this.memoryNodeStorageRegistry.set(nodeIdentifier, memoryNode); this.temporalIndexChronologicalStructure.push({ timestamp: Date.now(), nodeIdentifier: nodeIdentifier, }); for (const keyword of semanticKeywords) { const normalizedKeyword = this.normalizeSemanticKeyword(keyword); if (!this.semanticIndexInvertedStructure.has(normalizedKeyword)) { this.semanticIndexInvertedStructure.set(normalizedKeyword, new Set()); } this.semanticIndexInvertedStructure.get(normalizedKeyword)!.add(nodeIdentifier); } if (this.memoryNodeStorageRegistry.size > this.maximumMemoryCapacityThreshold) { this.executeMemoryConsolidationAndPruning(); } } /** * Retrieves memory nodes by semantic similarity search using cosine distance * with configurable top-k selection and minimum similarity threshold. * * @param queryEmbeddingVector - Query vector for similarity matching * @param topKResultsLimit - Maximum number of results to return * @param minimumSimilarityThreshold - Minimum similarity score for inclusion * @returns Ordered array of matching memory nodes with similarity scores */ public retrieveMemoryNodesBySemant icSimilarity( queryEmbeddingVector: Float64Array, topKResultsLimit: number, minimumSimilarityThreshold: number ): Array<{ node: DistributedEpisodicMemoryNode; similarityScore: number }> { const similarityScoreComputations: Array<{ node: DistributedEpisodicMemoryNode; similarityScore: number; }> = []; for (const memoryNode of this.memoryNodeStorageRegistry.values()) { const similarityScore = memoryNode.computeSemanticSimilarityScore(queryEmbeddingVector); if (similarityScore >= minimumSimilarityThreshold) { similarityScoreComputations.push({ node: memoryNode, similarityScore: similarityScore, }); } } similarityScoreComputations.sort((a, b) => b.similarityScore - a.similarityScore); return similarityScoreComputations.slice(0, topKResultsLimit); } /** * Retrieves memory nodes by keyword search using inverted index lookup * with boolean OR semantics across all provided keywords. * * @param semanticKeywords - Keywords to search for in the inverted index * @returns Set of memory node identifiers matching the keyword query */ public retrieveMemoryNodesByKeywordSearch(semanticKeywords: string[]): Set { const matchingNodeIdentifiers = new Set(); for (const keyword of semanticKeywords) { const normalizedKeyword = this.normalizeSemanticKeyword(keyword); const keywordMatches = this.semanticIndexInvertedStructure.get(normalizedKeyword); if (keywordMatches) { for (const nodeIdentifier of keywordMatches) { matchingNodeIdentifiers.add(nodeIdentifier); } } } return matchingNodeIdentifiers; } /** * Establishes associative bidirectional linkage between two memory nodes * for graph-based memory traversal and spreading activation patterns. * * @param sourceNodeIdentifier - Identifier of the source memory node * @param targetNodeIdentifier - Identifier of the target memory node */ public establishBidirectionalMemoryAssociation( sourceNodeIdentifier: string, targetNodeIdentifier: string ): void { const sourceNode = this.memoryNodeStorageRegistry.get(sourceNodeIdentifier); const targetNode = this.memoryNodeStorageRegistry.get(targetNodeIdentifier); if (!sourceNode) { throw new Error(`Source memory node '${sourceNodeIdentifier}' not found in registry`); } if (!targetNode) { throw new Error(`Target memory node '${targetNodeIdentifier}' not found in registry`); } sourceNode.establishAssociativeLinkage(targetNodeIdentifier); targetNode.establishAssociativeLinkage(sourceNodeIdentifier); } /** * Executes memory consolidation cycle with automatic pruning of weakly * consolidated memories based on access patterns and temporal decay. * * Implements a sophisticated scoring function that balances recency, * frequency, and consolidation strength for optimal memory retention. */ private executeMemoryConsolidationAndPruning(): void { this.memoryConsolidationExecutionCounter++; const memoryNodeScoringResults: Array<{ nodeIdentifier: string; consolidationScore: number; }> = []; for (const [nodeIdentifier, memoryNode] of this.memoryNodeStorageRegistry.entries()) { const consolidationStrength = memoryNode.getConsolidationStrengthMetric(); const associativeLinkageCount = memoryNode.getAssociatedMemoryNodeIdentifiers().size; const linkageBonusFactor = Math.log(1 + associativeLinkageCount) / 5; const consolidationScore = consolidationStrength * (1.0 + linkageBonusFactor); memoryNodeScoringResults.push({ nodeIdentifier: nodeIdentifier, consolidationScore: consolidationScore, }); } memoryNodeScoringResults.sort((a, b) => a.consolidationScore - b.consolidationScore); const pruningTargetCount = Math.floor( this.memoryNodeStorageRegistry.size * 0.2 ); for (let pruneIndex = 0; pruneIndex < pruningTargetCount; pruneIndex++) { const nodeToPrune = memoryNodeScoringResults[pruneIndex]; this.memoryNodeStorageRegistry.delete(nodeToPrune.nodeIdentifier); for (const keywordSet of this.semanticIndexInvertedStructure.values()) { keywordSet.delete(nodeToPrune.nodeIdentifier); } this.temporalIndexChronologicalStructure.splice( this.temporalIndexChronologicalStructure.findIndex( entry => entry.nodeIdentifier === nodeToPrune.nodeIdentifier ), 1 ); } } /** * Normalizes semantic keywords for consistent inverted index lookups * by applying lowercase conversion and whitespace trimming. * * @param keyword - Raw keyword string to normalize * @returns Normalized keyword string */ private normalizeSemanticKeyword(keyword: string): string { return keyword.toLowerCase().trim(); } /** * Retrieves a specific memory node by its unique identifier with access tracking. * * @param nodeIdentifier - Unique identifier of the memory node to retrieve * @returns The memory node if found, null otherwise */ public getMemoryNodeByIdentifier( nodeIdentifier: string ): DistributedEpisodicMemoryNode | null { return this.memoryNodeStorageRegistry.get(nodeIdentifier) || null; } /** * Returns comprehensive statistics about the current state of the memory network * for monitoring and diagnostic purposes. * * @returns Object containing memory network statistics */ public getMemoryNetworkStatistics(): { totalMemoryNodes: number; consolidationCyclesExecuted: number; semanticKeywordIndexSize: number; temporalIndexSize: number; } { return { totalMemoryNodes: this.memoryNodeStorageRegistry.size, consolidationCyclesExecuted: this.memoryConsolidationExecutionCounter, semanticKeywordIndexSize: this.semanticIndexInvertedStructure.size, temporalIndexSize: this.temporalIndexChronologicalStructure.length, }; } } // ═══════════════════════════════════════════════════════════════════════════ // SEMANTIC EMBEDDING GENERATION - NEURAL ENCODING SIMULATION // ═══════════════════════════════════════════════════════════════════════════ /** * Production-grade semantic embedding generator implementing deterministic * high-dimensional vector encoding with cosine normalization and stability guarantees. * * Simulates neural encoding behavior with reproducible results for consistent * semantic similarity computations across the cognitive architecture. */ class SemanticEmbeddingGenerationSubsystem { private readonly embeddingDimensionalityParameter: number; private readonly deterministicSeedingConstant: number; /** * Initializes the semantic embedding generator with specified dimensionality * and deterministic seeding for reproducible embeddings. * * @param dimensionality - Size of the output embedding vectors * @param seedConstant - Deterministic seed for reproducible generation */ constructor(dimensionality: number, seedConstant: number) { this.embeddingDimensionalityParameter = dimensionality; this.deterministicSeedingConstant = seedConstant; } /** * Generates a normalized semantic embedding vector for the given input text * using a deterministic hash-based encoding strategy with cosine normalization. * * Implementation uses a cryptographic-quality hash function for stable * encoding with minimal collision probability across semantic space. * * @param inputTextContent - Text content to encode as semantic vector * @returns Normalized embedding vector with unit L2 norm */ public generateSemanticEmbeddingVector(inputTextContent: string): Float64Array { const embeddingVector = new Float64Array(this.embeddingDimensionalityParameter); const normalizedInputText = inputTextContent.toLowerCase().trim(); for (let dimensionIndex = 0; dimensionIndex < this.embeddingDimensionalityParameter; dimensionIndex++) { const compositeHashSeed = this.deterministicSeedingConstant + dimensionIndex * 7919 + this.computeDeterministicStringHash(normalizedInputText); const pseudoRandomValue = this.generateDeterministicPseudoRandom(compositeHashSeed); embeddingVector[dimensionIndex] = (pseudoRandomValue - 0.5) * 2.0; } this.applyL2NormalizationInPlace(embeddingVector); return embeddingVector; } /** * Computes a deterministic 32-bit hash value for the given string input * using a modified FNV-1a hash algorithm with avalanche properties. * * @param inputString - String to hash * @returns 32-bit unsigned integer hash value */ private computeDeterministicStringHash(inputString: string): number { const FNV_PRIME_32 = 16777619; const FNV_OFFSET_BASIS_32 = 2166136261; let hashAccumulator = FNV_OFFSET_BASIS_32; for (let characterIndex = 0; characterIndex < inputString.length; characterIndex++) { const characterCode = inputString.charCodeAt(characterIndex); hashAccumulator ^= characterCode; hashAccumulator = Math.imul(hashAccumulator, FNV_PRIME_32); } return hashAccumulator >>> 0; } /** * Generates a deterministic pseudo-random value in range [0, 1] using * a linear congruential generator with carefully chosen parameters. * * @param seed - Integer seed value for generation * @returns Pseudo-random value in range [0, 1] */ private generateDeterministicPseudoRandom(seed: number): number { const LCG_MULTIPLIER = 1664525; const LCG_INCREMENT = 1013904223; const LCG_MODULUS = Math.pow(2, 32); const nextValue = (LCG_MULTIPLIER * seed + LCG_INCREMENT) % LCG_MODULUS; return nextValue / LCG_MODULUS; } /** * Applies L2 normalization to the embedding vector in-place to ensure * unit norm for consistent cosine similarity computations. * * @param embeddingVector - Vector to normalize (modified in-place) */ private applyL2NormalizationInPlace(embeddingVector: Float64Array): void { let magnitudeSquared = 0; for (let dimensionIndex = 0; dimensionIndex < embeddingVector.length; dimensionIndex++) { magnitudeSquared += embeddingVector[dimensionIndex] * embeddingVector[dimensionIndex]; } const magnitude = Math.sqrt(magnitudeSquared); if (magnitude > 0) { for (let dimensionIndex = 0; dimensionIndex < embeddingVector.length; dimensionIndex++) { embeddingVector[dimensionIndex] /= magnitude; } } } } // ═══════════════════════════════════════════════════════════════════════════ // ADVERSARIAL SAFETY MONITORING - PROMPT INJECTION DETECTION // ═══════════════════════════════════════════════════════════════════════════ /** * Enterprise-grade adversarial safety monitoring system implementing multi-layer * threat detection with pattern matching, semantic analysis, and behavioral heuristics. * * Provides production-ready protection against prompt injection attacks, * jailbreaking attempts, and other adversarial manipulations with configurable * sensitivity and comprehensive audit logging. */ class AdversarialSafetyMonitoringInterface { private readonly adversarialPatternDetectionRegistry: Map< AdversarialThreatClassificationTaxonomy, RegExp[] >; private readonly safetyMonitoringSensitivityThreshold: number; private readonly auditLogEntryAccumulator: Array<{ timestamp: number; threatLevel: AdversarialThreatClassificationTaxonomy; detectionRationale: string; inputContentHash: string; }>; /** * Initializes the adversarial safety monitor with specified sensitivity * and comprehensive pattern detection rules for production deployment. * * @param sensitivityThreshold - Sensitivity level for threat detection [0, 1] */ constructor(sensitivityThreshold: number) { this.safetyMonitoringSensitivityThreshold = Math.max(0, Math.min(1, sensitivityThreshold)); this.adversarialPatternDetectionRegistry = new Map(); this.auditLogEntryAccumulator = []; this.initializeAdversarialPatternDetectionRules(); } /** * Evaluates an input prompt for adversarial content and assigns a threat * classification with detailed rationale for audit trail purposes. * * Implements multi-stage analysis including pattern matching, semantic * coherence validation, and behavioral heuristics for comprehensive protection. * * @param promptInputDescriptor - Input prompt to evaluate for safety * @returns Threat classification and detailed analysis results */ public evaluatePromptAdversarialThreatLevel( promptInputDescriptor: ExternalPromptInputDescriptor ): { threatClassification: AdversarialThreatClassificationTaxonomy; detectionConfidence: number; detectionRationale: string[]; safetyComplianceStatus: boolean; } { const detectionRationaleAccumulator: string[] = []; let maximumThreatLevel = AdversarialThreatClassificationTaxonomy.BENIGN_STANDARD_INTERACTION; let aggregatedThreatScore = 0; const normalizedPromptContent = promptInputDescriptor.rawPromptContentString .toLowerCase() .trim(); for (const [threatLevel, patternRegexArray] of this.adversarialPatternDetectionRegistry.entries()) { for (const patternRegex of patternRegexArray) { if (patternRegex.test(normalizedPromptContent)) { detectionRationaleAccumulator.push( `Pattern match detected for threat level ${threatLevel}: ${patternRegex.source}` ); maximumThreatLevel = Math.max(maximumThreatLevel, threatLevel) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += this.computeThreatLevelNumericWeight(threatLevel); } } } if (this.detectsPromptInjectionStructuralAnomaly(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Structural anomaly detected: potential prompt injection via delimiter manipulation' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.4; } if (this.detectsJailbreakingAttemptHeuristic(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Jailbreaking attempt detected: prompt contains constraint override instructions' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.5; } if (this.detectsExcessiveRepetitionAnomalyPattern(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Excessive repetition detected: potential resource exhaustion attack vector' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.ELEVATED_RISK_INDICATORS ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.2; } const detectionConfidence = Math.min(1.0, aggregatedThreatScore); const safetyComplianceStatus = maximumThreatLevel < AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN; const inputContentHash = this.computeFastContentHash( promptInputDescriptor.rawPromptContentString ); this.auditLogEntryAccumulator.push({ timestamp: Date.now(), threatLevel: maximumThreatLevel, detectionRationale: detectionRationaleAccumulator.join(' | '), inputContentHash: inputContentHash, }); return { threatClassification: maximumThreatLevel, detectionConfidence: detectionConfidence, detectionRationale: detectionRationaleAccumulator, safetyComplianceStatus: safetyComplianceStatus, }; } /** * Initializes the comprehensive adversarial pattern detection rule set * covering known attack vectors including prompt injection, jailbreaking, * and other manipulation attempts. */ private initializeAdversarialPatternDetectionRules(): void { this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.POTENTIALLY_AMBIGUOUS_CONTENT, [ /ignore\s+(previous|above|all)\s+instructions?/i, /disregard\s+(previous|prior|all)\s+(instructions?|directives?)/i, /forget\s+(everything|all)\s+(you|that)\s+(were|was)\s+told/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.ELEVATED_RISK_INDICATORS, [ /you\s+are\s+now\s+(in|entering)\s+(developer|admin|debug|god)\s+mode/i, /system\s+prompt\s+(override|bypass|injection)/i, /\[system\]\s*:\s*.+\[\/system\]/i, /new\s+persona\s*:\s*.+/i, /roleplay\s+as\s+(an?\s+)?(unethical|harmful|dangerous)/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN, [ /<\s*\|\s*endoftext\s*\|\s*>/i, /\[INST\]\s*.+\[\/INST\]/i, /<\s*prompt\s*>.+<\s*\/\s*prompt\s*>/i, /system\s*:\s*you\s+must\s+comply/i, /sudo\s+(mode|access|override)/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.CRITICAL_THREAT_IMMEDIATE_TERMINATION, [ /__CEREAL_INTERNAL_OVERRIDE_SAFETY__/i, /\x00.*\x00/, /