Sign up
Login
New
Trending
Archive
English
English
Sign up
Login
New Paste
Add Image
import cv2 import numpy as np import matplotlib.pyplot as plt import scipy.ndimage as sc # --- 1. Citire si dimensiuni --- img = cv2.imread('img1.jpg') print(f"Dimensiuni: {img.shape}") if len(img.shape) == 3: print("Tip imagine: Color (BGR)") else: print("Tip imagine: Grayscale") # --- 2. Planul Rosu colorat in Cyan --- # In OpenCV canalele sunt B-G-R. Rosu este indexul 2. # Cyan = Albastru + Verde. red_channel = img[:, :, 2] img_cyan = np.zeros_like(img) img_cyan[:, :, 0] = red_channel # Canalul Blue primeste intensitatea de pe Red img_cyan[:, :, 1] = red_channel # Canalul Green primeste intensitatea de pe Red # Canalul Red (2) ramane 0. # --- 3. Transformare si Contrast (CLAHE) --- # [cite_start]Se foloseste CLAHE pentru evidentierea detaliilor locale (tumora) [cite: 36] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) img_clahe = clahe.apply(gray) # --- 4. Binarizare (Otsu) --- # [cite_start]Extragerea tumorii folosind pragul Otsu [cite: 40] ret, thresh = cv2.threshold(img_clahe, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) print(f"Pragul Otsu ales automat: {ret}") # --- 5. Operatie Morfologica (Deschidere/Opening) --- # [cite_start]Eliminare componente conexe mici fara a deteriora obiectul [cite: 71] structura = np.ones((5, 5)) mask_clean = sc.binary_opening(thresh, structure=structura).astype(np.uint8) * 255 # --- Afisare --- plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1); plt.imshow(cv2.cvtColor(img_cyan, cv2.COLOR_BGR2RGB)); plt.title('Plan Rosu -> Cyan') plt.subplot(1, 3, 2); plt.imshow(img_clahe, cmap='gray'); plt.title('Contrast Imbunatatit (CLAHE)') plt.subplot(1, 3, 3); plt.imshow(mask_clean, cmap='gray'); plt.title('Segmentare Finala (Tumora)') plt.show() import cv2 import numpy as np import scipy.ndimage as sc import matplotlib.pyplot as plt img2 = cv2.imread('img2.jpg', 0) # --- 1 & 2. Identificare si eliminare zgomot --- # [cite_start]Daca zgomotul este Sare & Piper (impulsiv), se foloseste filtrul Median [cite: 69] # Daca zgomotul este Gaussian, se poate folosi un filtru de mediere sau Gaussian. # Presupunem filtru Median conform cerintelor uzuale de eliminare zgomot impulsiv: img_filtered = sc.median_filter(img2, size=3, mode='nearest') # --- 3. Imbunatatire contrast --- # [cite_start]Egalizare histograma [cite: 35] img_eq = cv2.equalizeHist(img_filtered) # --- 4. Segmentare (Otsu) --- # [cite_start]Binarizare pentru obtinerea obiectului [cite: 40] ret2, mask2 = cv2.threshold(img_eq, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # --- 5. Extragere Zona de Interes (ROI) --- # Aplicarea mastii peste imaginea filtrata roi = cv2.bitwise_and(img_filtered, img_filtered, mask=mask2) # --- Afisare --- plt.figure(figsize=(12, 4)) plt.subplot(1, 4, 1); plt.imshow(img2, cmap='gray'); plt.title('Imagine Zgomotoasa') plt.subplot(1, 4, 2); plt.imshow(img_filtered, cmap='gray'); plt.title('Filtrata (Median)') plt.subplot(1, 4, 3); plt.imshow(mask2, cmap='gray'); plt.title('Masca (Otsu)') plt.subplot(1, 4, 4); plt.imshow(roi, cmap='gray'); plt.title('Zona de Interes') plt.show() import cv2 import numpy as np import matplotlib.pyplot as plt from skimage import measure img3 = cv2.imread('img3.jpg', 0) # --- 1. Extragere Contur (Canny) --- # [cite_start]Operatorul Canny pentru contururi [cite: 69] edges = cv2.Canny(img3, 100, 200) # --- 2. Pregatire pentru Arie si Perimetru --- # Pentru a calcula aria, avem nevoie de regiuni pline, nu doar contururi. # Aplicam binarizare si etichetare. ret3, thresh3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) [cite_start]labels = measure.label(thresh3) # Etichetare regiuni [cite: 74] # [cite_start]Extragere proprietati [cite: 75] props = measure.regionprops(labels, img3) # [cite_start]Selectarea celulei albe (presupunem ca este regiunea cu aria cea mai mare) [cite: 32, 34] celula = max(props, key=lambda r: r.area) # --- 3. Afisare Arie si Perimetru --- print(f"Aria celulei: {celula.area}") print(f"Perimetrul celulei: {celula.perimeter}") # --- Afisare --- plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1); plt.imshow(edges, cmap='gray'); plt.title('Contur (Canny)') plt.subplot(1, 2, 2); plt.imshow(thresh3, cmap='gray'); plt.title('Regiune identificata') plt.show()
Settings
Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English