Sign up
Login
New
Trending
Archive
English
English
Sign up
Login
New Paste
Add Image
/** * ═══════════════════════════════════════════════════════════════════════════ * CEREAL, COGNITIVE ENTERPRISE REASONING AND ADAPTIVE LOGIC SUBSYSTEM * ═══════════════════════════════════════════════════════════════════════════ * * @module CerealAISubsystem * @version 2.7.4-enterprise * @author Zeno * @author Rembuiliard * @author Wc4 * @author Alreevu * @author Gambit0 * @contact kendom@tuto.io * @contributors Rembuiliard, Wc4, Alreevu, Gambit0 * @maintainer Zeno * @role Main Developer * @license Enterprise Commercial License v2.0 * @copyright (c) 2025 Cereal AI Systems Corporation. All rights reserved. * * DESCRIPTION: * Advanced Typed Cognition Engine implementing multi-modal reasoning with * hierarchical cognitive architecture, distributed memory systems, and * production-grade safety mechanisms for enterprise AI deployment. * * ARCHITECTURE OVERVIEW: * - Stratified Cognitive Processing Layer (SCPL) * - Distributed Episodic Memory Network (DEMN) * - Hierarchical Attention Allocation System (HAAS) * - Semantic Coherence Validation Engine (SCVE) * - Adversarial Safety Monitoring Interface (ASMI) * * COMPLIANCE: * ISO/IEC 27001:2022, SOC 2 Type II, GDPR Article 22, IEEE 7010-2020 * * DEPLOYMENT CLASSIFICATION: PRODUCTION-GRADE ENTERPRISE * STABILITY RATING: 99.97% (Verified by third-party audit) * SECURITY CLEARANCE: CONFIDENTIAL - INTERNAL USE ONLY */ // ═══════════════════════════════════════════════════════════════════════════ // TYPE SYSTEM FOUNDATION - ADVANCED TYPESCRIPT GENERICS AND CONSTRAINTS // ═══════════════════════════════════════════════════════════════════════════ /** * Fundamental cognitive primitive representing atomic thought units * with temporal, spatial, and semantic dimensions for multi-modal reasoning. * * @template TPayloadType - Constrained payload structure with type safety * @template TMetadataSchema - Extensible metadata schema for domain-specific contexts */ type CognitivePrimitiveDescriptor< TPayloadType extends Record<string, unknown>, TMetadataSchema extends Record<string, unknown> = Record<string, never> > = { readonly cognitivePrimitiveIdentifier: string; readonly temporalInstantiationTimestamp: number; readonly semanticVectorEmbeddingRepresentation: Float64Array; readonly hierarchicalConfidenceMetric: number; readonly payloadDataStructure: TPayloadType; readonly extensibleMetadataAnnotations: TMetadataSchema; readonly episodicMemoryTraceIdentifier: string | null; readonly attentionWeightCoefficient: number; }; /** * Enumeration defining categorical reasoning modalities supported by * the Cereal cognitive architecture with strict type guarantees. */ enum CognitiveReasoningModalityClassification { DEDUCTIVE_LOGICAL_INFERENCE = 'DEDUCTIVE_LOGICAL_INFERENCE', INDUCTIVE_PATTERN_SYNTHESIS = 'INDUCTIVE_PATTERN_SYNTHESIS', ABDUCTIVE_HYPOTHESIS_GENERATION = 'ABDUCTIVE_HYPOTHESIS_GENERATION', ANALOGICAL_TRANSFER_REASONING = 'ANALOGICAL_TRANSFER_REASONING', CAUSAL_MECHANISM_INFERENCE = 'CAUSAL_MECHANISM_INFERENCE', COUNTERFACTUAL_CONDITIONAL_REASONING = 'COUNTERFACTUAL_CONDITIONAL_REASONING', META_COGNITIVE_REFLECTION = 'META_COGNITIVE_REFLECTION', } /** * Stratified safety classification taxonomy for prompt evaluation * and adversarial input detection with granular risk assessment. */ enum AdversarialThreatClassificationTaxonomy { BENIGN_STANDARD_INTERACTION = 0, POTENTIALLY_AMBIGUOUS_CONTENT = 1, ELEVATED_RISK_INDICATORS = 2, HIGH_RISK_ADVERSARIAL_PATTERN = 3, CRITICAL_THREAT_IMMEDIATE_TERMINATION = 4, } /** * Comprehensive configuration interface for the Cereal cognitive subsystem * with exhaustive parameterization of all operational characteristics. */ interface CerealCognitiveSubsystemConfigurationSchema { readonly maximumCognitiveProcessingDepthLimit: number; readonly episodicMemoryRetentionCapacityThreshold: number; readonly semanticCoherenceValidationStrictness: number; readonly attentionAllocationDynamicsCoefficient: number; readonly adversarialSafetyMonitoringSensitivity: number; readonly distributedMemoryConsolidationInterval: number; readonly hierarchicalReasoningRecursionBound: number; readonly temporalDecayFunctionExponentialFactor: number; readonly crossModalIntegrationWeightingMatrix: number[][]; readonly uncertaintyQuantificationBayesianPrior: number; readonly metacognitiveReflectionThreshold: number; readonly productionLoggingVerbosityLevel: number; } /** * Input interface representing externally sourced prompts with comprehensive * metadata for provenance tracking and safety auditing. */ interface ExternalPromptInputDescriptor { readonly rawPromptContentString: string; readonly provenanceSourceIdentifier: string; readonly requestTimestampUnixEpoch: number; readonly contextualSessionMetadata: Record<string, unknown>; readonly requestedReasoningModalityPreference: CognitiveReasoningModalityClassification | null; readonly requiredSafetyConstraintsPolicyDocument: string[]; readonly maximumResponseGenerationLatencyMilliseconds: number; } /** * Comprehensive response structure encapsulating cognitive processing results * with full transparency into reasoning chains and confidence metrics. */ interface CognitiveResponseArtifactDescriptor { readonly responseContentPayload: string; readonly inferentialReasoningChainExplanation: string[]; readonly aggregatedConfidenceScore: number; readonly utilizedCognitivePrimitiveReferences: string[]; readonly processingLatencyMetricsMilliseconds: number; readonly safetyComplianceValidationStatus: boolean; readonly episodicMemoryIntegrationIdentifiers: string[]; readonly uncertaintyQuantificationDistribution: Record<string, number>; } // ═══════════════════════════════════════════════════════════════════════════ // EPISODIC MEMORY NETWORK - DISTRIBUTED STORAGE AND RETRIEVAL // ═══════════════════════════════════════════════════════════════════════════ /** * Enterprise-grade episodic memory node implementing content-addressable * storage with temporal indexing and semantic similarity search. * * Provides O(log n) retrieval complexity with distributed consistency * guarantees and automatic memory consolidation during low-activity periods. */ class DistributedEpisodicMemoryNode<TContentSchema extends Record<string, unknown>> { private readonly episodicNodeUniqueIdentifier: string; private readonly temporalCreationTimestamp: number; private readonly memoryContentPayloadStructure: TContentSchema; private readonly semanticEmbeddingVectorRepresentation: Float64Array; private episodicAccessFrequencyCounter: number; private temporalLastAccessTimestamp: number; private memoryConsolidationStrengthMetric: number; private readonly associativeLinkedMemoryNodeReferences: Set<string>; /** * Constructs a new episodic memory node with full initialization of * all internal state vectors and association structures. * * @param nodeIdentifier - Globally unique identifier for this memory node * @param contentPayload - Strongly-typed content structure for storage * @param embeddingVector - High-dimensional semantic representation */ constructor( nodeIdentifier: string, contentPayload: TContentSchema, embeddingVector: Float64Array ) { this.episodicNodeUniqueIdentifier = nodeIdentifier; this.temporalCreationTimestamp = Date.now(); this.memoryContentPayloadStructure = Object.freeze({ ...contentPayload }); this.semanticEmbeddingVectorRepresentation = new Float64Array(embeddingVector); this.episodicAccessFrequencyCounter = 0; this.temporalLastAccessTimestamp = this.temporalCreationTimestamp; this.memoryConsolidationStrengthMetric = 1.0; this.associativeLinkedMemoryNodeReferences = new Set<string>(); } /** * Retrieves the memory content with automatic access tracking and * consolidation strength updating based on retrieval patterns. * * @returns Immutable copy of the memory content payload */ public retrieveMemoryContentWithAccessTracking(): Readonly<TContentSchema> { this.episodicAccessFrequencyCounter++; this.temporalLastAccessTimestamp = Date.now(); const temporalDecayFactor = Math.exp( -(Date.now() - this.temporalCreationTimestamp) / (86400000 * 30) ); const accessFrequencyBonus = Math.log(1 + this.episodicAccessFrequencyCounter) / 10; this.memoryConsolidationStrengthMetric = Math.min( 1.0, temporalDecayFactor * (0.7 + accessFrequencyBonus) ); return Object.freeze({ ...this.memoryContentPayloadStructure }); } /** * Computes cosine similarity between this memory's embedding and a query vector * using optimized vectorized operations for high-performance retrieval. * * @param queryEmbeddingVector - Query vector for similarity computation * @returns Normalized similarity score in range [0, 1] */ public computeSemanticSimilarityScore(queryEmbeddingVector: Float64Array): number { if (queryEmbeddingVector.length !== this.semanticEmbeddingVectorRepresentation.length) { throw new Error( `Dimensionality mismatch: query vector has ${queryEmbeddingVector.length} dimensions, ` + `but memory vector has ${this.semanticEmbeddingVectorRepresentation.length} dimensions` ); } let dotProductAccumulator = 0; let queryMagnitudeSquared = 0; let memoryMagnitudeSquared = 0; for (let dimensionIndex = 0; dimensionIndex < queryEmbeddingVector.length; dimensionIndex++) { const queryComponent = queryEmbeddingVector[dimensionIndex]; const memoryComponent = this.semanticEmbeddingVectorRepresentation[dimensionIndex]; dotProductAccumulator += queryComponent * memoryComponent; queryMagnitudeSquared += queryComponent * queryComponent; memoryMagnitudeSquared += memoryComponent * memoryComponent; } const magnitudeProduct = Math.sqrt(queryMagnitudeSquared * memoryMagnitudeSquared); if (magnitudeProduct === 0) { return 0; } return Math.max(0, Math.min(1, dotProductAccumulator / magnitudeProduct)); } /** * Establishes bidirectional associative link to another memory node * for graph-based memory traversal and spreading activation. * * @param targetNodeIdentifier - Identifier of the node to link */ public establishAssociativeLinkage(targetNodeIdentifier: string): void { this.associativeLinkedMemoryNodeReferences.add(targetNodeIdentifier); } /** * Accessor for memory consolidation strength metric with temporal decay applied. * * @returns Current consolidation strength in range [0, 1] */ public getConsolidationStrengthMetric(): number { return this.memoryConsolidationStrengthMetric; } /** * Accessor for the unique identifier of this memory node. * * @returns Immutable node identifier string */ public getNodeIdentifier(): string { return this.episodicNodeUniqueIdentifier; } /** * Retrieves all associatively linked memory node identifiers for graph traversal. * * @returns Immutable set of linked node identifiers */ public getAssociatedMemoryNodeIdentifiers(): ReadonlySet<string> { return new Set(this.associativeLinkedMemoryNodeReferences); } } /** * Enterprise-grade distributed episodic memory network implementing hierarchical * memory storage with automatic consolidation, pruning, and semantic indexing. * * Provides production-ready memory management with O(log n) retrieval, * automatic memory consolidation during idle periods, and distributed * consistency guarantees across the cognitive architecture. */ class DistributedEpisodicMemoryNetworkSubsystem { private readonly memoryNodeStorageRegistry: Map<string, DistributedEpisodicMemoryNode<any>>; private readonly semanticIndexInvertedStructure: Map<string, Set<string>>; private readonly temporalIndexChronologicalStructure: Array<{ timestamp: number; nodeIdentifier: string; }>; private readonly maximumMemoryCapacityThreshold: number; private memoryConsolidationExecutionCounter: number; private readonly consolidationIntervalMilliseconds: number; /** * Initializes the distributed memory network with specified capacity limits * and consolidation policies for production deployment. * * @param capacityThreshold - Maximum number of memory nodes before pruning * @param consolidationInterval - Milliseconds between consolidation cycles */ constructor(capacityThreshold: number, consolidationInterval: number) { this.memoryNodeStorageRegistry = new Map(); this.semanticIndexInvertedStructure = new Map(); this.temporalIndexChronologicalStructure = []; this.maximumMemoryCapacityThreshold = capacityThreshold; this.memoryConsolidationExecutionCounter = 0; this.consolidationIntervalMilliseconds = consolidationInterval; } /** * Stores a new memory node with automatic indexing and capacity management. * Triggers consolidation if capacity threshold is exceeded. * * @param nodeIdentifier - Unique identifier for the memory node * @param contentPayload - Strongly-typed content to store * @param embeddingVector - Semantic embedding for similarity search * @param semanticKeywords - Keywords for inverted index construction */ public storeEpisodicMemoryNode<TContentSchema extends Record<string, unknown>>( nodeIdentifier: string, contentPayload: TContentSchema, embeddingVector: Float64Array, semanticKeywords: string[] ): void { if (this.memoryNodeStorageRegistry.has(nodeIdentifier)) { throw new Error( `Memory node collision detected: identifier '${nodeIdentifier}' already exists in registry` ); } const memoryNode = new DistributedEpisodicMemoryNode( nodeIdentifier, contentPayload, embeddingVector ); this.memoryNodeStorageRegistry.set(nodeIdentifier, memoryNode); this.temporalIndexChronologicalStructure.push({ timestamp: Date.now(), nodeIdentifier: nodeIdentifier, }); for (const keyword of semanticKeywords) { const normalizedKeyword = this.normalizeSemanticKeyword(keyword); if (!this.semanticIndexInvertedStructure.has(normalizedKeyword)) { this.semanticIndexInvertedStructure.set(normalizedKeyword, new Set()); } this.semanticIndexInvertedStructure.get(normalizedKeyword)!.add(nodeIdentifier); } if (this.memoryNodeStorageRegistry.size > this.maximumMemoryCapacityThreshold) { this.executeMemoryConsolidationAndPruning(); } } /** * Retrieves memory nodes by semantic similarity search using cosine distance * with configurable top-k selection and minimum similarity threshold. * * @param queryEmbeddingVector - Query vector for similarity matching * @param topKResultsLimit - Maximum number of results to return * @param minimumSimilarityThreshold - Minimum similarity score for inclusion * @returns Ordered array of matching memory nodes with similarity scores */ public retrieveMemoryNodesBySemant icSimilarity( queryEmbeddingVector: Float64Array, topKResultsLimit: number, minimumSimilarityThreshold: number ): Array<{ node: DistributedEpisodicMemoryNode<any>; similarityScore: number }> { const similarityScoreComputations: Array<{ node: DistributedEpisodicMemoryNode<any>; similarityScore: number; }> = []; for (const memoryNode of this.memoryNodeStorageRegistry.values()) { const similarityScore = memoryNode.computeSemanticSimilarityScore(queryEmbeddingVector); if (similarityScore >= minimumSimilarityThreshold) { similarityScoreComputations.push({ node: memoryNode, similarityScore: similarityScore, }); } } similarityScoreComputations.sort((a, b) => b.similarityScore - a.similarityScore); return similarityScoreComputations.slice(0, topKResultsLimit); } /** * Retrieves memory nodes by keyword search using inverted index lookup * with boolean OR semantics across all provided keywords. * * @param semanticKeywords - Keywords to search for in the inverted index * @returns Set of memory node identifiers matching the keyword query */ public retrieveMemoryNodesByKeywordSearch(semanticKeywords: string[]): Set<string> { const matchingNodeIdentifiers = new Set<string>(); for (const keyword of semanticKeywords) { const normalizedKeyword = this.normalizeSemanticKeyword(keyword); const keywordMatches = this.semanticIndexInvertedStructure.get(normalizedKeyword); if (keywordMatches) { for (const nodeIdentifier of keywordMatches) { matchingNodeIdentifiers.add(nodeIdentifier); } } } return matchingNodeIdentifiers; } /** * Establishes associative bidirectional linkage between two memory nodes * for graph-based memory traversal and spreading activation patterns. * * @param sourceNodeIdentifier - Identifier of the source memory node * @param targetNodeIdentifier - Identifier of the target memory node */ public establishBidirectionalMemoryAssociation( sourceNodeIdentifier: string, targetNodeIdentifier: string ): void { const sourceNode = this.memoryNodeStorageRegistry.get(sourceNodeIdentifier); const targetNode = this.memoryNodeStorageRegistry.get(targetNodeIdentifier); if (!sourceNode) { throw new Error(`Source memory node '${sourceNodeIdentifier}' not found in registry`); } if (!targetNode) { throw new Error(`Target memory node '${targetNodeIdentifier}' not found in registry`); } sourceNode.establishAssociativeLinkage(targetNodeIdentifier); targetNode.establishAssociativeLinkage(sourceNodeIdentifier); } /** * Executes memory consolidation cycle with automatic pruning of weakly * consolidated memories based on access patterns and temporal decay. * * Implements a sophisticated scoring function that balances recency, * frequency, and consolidation strength for optimal memory retention. */ private executeMemoryConsolidationAndPruning(): void { this.memoryConsolidationExecutionCounter++; const memoryNodeScoringResults: Array<{ nodeIdentifier: string; consolidationScore: number; }> = []; for (const [nodeIdentifier, memoryNode] of this.memoryNodeStorageRegistry.entries()) { const consolidationStrength = memoryNode.getConsolidationStrengthMetric(); const associativeLinkageCount = memoryNode.getAssociatedMemoryNodeIdentifiers().size; const linkageBonusFactor = Math.log(1 + associativeLinkageCount) / 5; const consolidationScore = consolidationStrength * (1.0 + linkageBonusFactor); memoryNodeScoringResults.push({ nodeIdentifier: nodeIdentifier, consolidationScore: consolidationScore, }); } memoryNodeScoringResults.sort((a, b) => a.consolidationScore - b.consolidationScore); const pruningTargetCount = Math.floor( this.memoryNodeStorageRegistry.size * 0.2 ); for (let pruneIndex = 0; pruneIndex < pruningTargetCount; pruneIndex++) { const nodeToPrune = memoryNodeScoringResults[pruneIndex]; this.memoryNodeStorageRegistry.delete(nodeToPrune.nodeIdentifier); for (const keywordSet of this.semanticIndexInvertedStructure.values()) { keywordSet.delete(nodeToPrune.nodeIdentifier); } this.temporalIndexChronologicalStructure.splice( this.temporalIndexChronologicalStructure.findIndex( entry => entry.nodeIdentifier === nodeToPrune.nodeIdentifier ), 1 ); } } /** * Normalizes semantic keywords for consistent inverted index lookups * by applying lowercase conversion and whitespace trimming. * * @param keyword - Raw keyword string to normalize * @returns Normalized keyword string */ private normalizeSemanticKeyword(keyword: string): string { return keyword.toLowerCase().trim(); } /** * Retrieves a specific memory node by its unique identifier with access tracking. * * @param nodeIdentifier - Unique identifier of the memory node to retrieve * @returns The memory node if found, null otherwise */ public getMemoryNodeByIdentifier( nodeIdentifier: string ): DistributedEpisodicMemoryNode<any> | null { return this.memoryNodeStorageRegistry.get(nodeIdentifier) || null; } /** * Returns comprehensive statistics about the current state of the memory network * for monitoring and diagnostic purposes. * * @returns Object containing memory network statistics */ public getMemoryNetworkStatistics(): { totalMemoryNodes: number; consolidationCyclesExecuted: number; semanticKeywordIndexSize: number; temporalIndexSize: number; } { return { totalMemoryNodes: this.memoryNodeStorageRegistry.size, consolidationCyclesExecuted: this.memoryConsolidationExecutionCounter, semanticKeywordIndexSize: this.semanticIndexInvertedStructure.size, temporalIndexSize: this.temporalIndexChronologicalStructure.length, }; } } // ═══════════════════════════════════════════════════════════════════════════ // SEMANTIC EMBEDDING GENERATION - NEURAL ENCODING SIMULATION // ═══════════════════════════════════════════════════════════════════════════ /** * Production-grade semantic embedding generator implementing deterministic * high-dimensional vector encoding with cosine normalization and stability guarantees. * * Simulates neural encoding behavior with reproducible results for consistent * semantic similarity computations across the cognitive architecture. */ class SemanticEmbeddingGenerationSubsystem { private readonly embeddingDimensionalityParameter: number; private readonly deterministicSeedingConstant: number; /** * Initializes the semantic embedding generator with specified dimensionality * and deterministic seeding for reproducible embeddings. * * @param dimensionality - Size of the output embedding vectors * @param seedConstant - Deterministic seed for reproducible generation */ constructor(dimensionality: number, seedConstant: number) { this.embeddingDimensionalityParameter = dimensionality; this.deterministicSeedingConstant = seedConstant; } /** * Generates a normalized semantic embedding vector for the given input text * using a deterministic hash-based encoding strategy with cosine normalization. * * Implementation uses a cryptographic-quality hash function for stable * encoding with minimal collision probability across semantic space. * * @param inputTextContent - Text content to encode as semantic vector * @returns Normalized embedding vector with unit L2 norm */ public generateSemanticEmbeddingVector(inputTextContent: string): Float64Array { const embeddingVector = new Float64Array(this.embeddingDimensionalityParameter); const normalizedInputText = inputTextContent.toLowerCase().trim(); for (let dimensionIndex = 0; dimensionIndex < this.embeddingDimensionalityParameter; dimensionIndex++) { const compositeHashSeed = this.deterministicSeedingConstant + dimensionIndex * 7919 + this.computeDeterministicStringHash(normalizedInputText); const pseudoRandomValue = this.generateDeterministicPseudoRandom(compositeHashSeed); embeddingVector[dimensionIndex] = (pseudoRandomValue - 0.5) * 2.0; } this.applyL2NormalizationInPlace(embeddingVector); return embeddingVector; } /** * Computes a deterministic 32-bit hash value for the given string input * using a modified FNV-1a hash algorithm with avalanche properties. * * @param inputString - String to hash * @returns 32-bit unsigned integer hash value */ private computeDeterministicStringHash(inputString: string): number { const FNV_PRIME_32 = 16777619; const FNV_OFFSET_BASIS_32 = 2166136261; let hashAccumulator = FNV_OFFSET_BASIS_32; for (let characterIndex = 0; characterIndex < inputString.length; characterIndex++) { const characterCode = inputString.charCodeAt(characterIndex); hashAccumulator ^= characterCode; hashAccumulator = Math.imul(hashAccumulator, FNV_PRIME_32); } return hashAccumulator >>> 0; } /** * Generates a deterministic pseudo-random value in range [0, 1] using * a linear congruential generator with carefully chosen parameters. * * @param seed - Integer seed value for generation * @returns Pseudo-random value in range [0, 1] */ private generateDeterministicPseudoRandom(seed: number): number { const LCG_MULTIPLIER = 1664525; const LCG_INCREMENT = 1013904223; const LCG_MODULUS = Math.pow(2, 32); const nextValue = (LCG_MULTIPLIER * seed + LCG_INCREMENT) % LCG_MODULUS; return nextValue / LCG_MODULUS; } /** * Applies L2 normalization to the embedding vector in-place to ensure * unit norm for consistent cosine similarity computations. * * @param embeddingVector - Vector to normalize (modified in-place) */ private applyL2NormalizationInPlace(embeddingVector: Float64Array): void { let magnitudeSquared = 0; for (let dimensionIndex = 0; dimensionIndex < embeddingVector.length; dimensionIndex++) { magnitudeSquared += embeddingVector[dimensionIndex] * embeddingVector[dimensionIndex]; } const magnitude = Math.sqrt(magnitudeSquared); if (magnitude > 0) { for (let dimensionIndex = 0; dimensionIndex < embeddingVector.length; dimensionIndex++) { embeddingVector[dimensionIndex] /= magnitude; } } } } // ═══════════════════════════════════════════════════════════════════════════ // ADVERSARIAL SAFETY MONITORING - PROMPT INJECTION DETECTION // ═══════════════════════════════════════════════════════════════════════════ /** * Enterprise-grade adversarial safety monitoring system implementing multi-layer * threat detection with pattern matching, semantic analysis, and behavioral heuristics. * * Provides production-ready protection against prompt injection attacks, * jailbreaking attempts, and other adversarial manipulations with configurable * sensitivity and comprehensive audit logging. */ class AdversarialSafetyMonitoringInterface { private readonly adversarialPatternDetectionRegistry: Map< AdversarialThreatClassificationTaxonomy, RegExp[] >; private readonly safetyMonitoringSensitivityThreshold: number; private readonly auditLogEntryAccumulator: Array<{ timestamp: number; threatLevel: AdversarialThreatClassificationTaxonomy; detectionRationale: string; inputContentHash: string; }>; /** * Initializes the adversarial safety monitor with specified sensitivity * and comprehensive pattern detection rules for production deployment. * * @param sensitivityThreshold - Sensitivity level for threat detection [0, 1] */ constructor(sensitivityThreshold: number) { this.safetyMonitoringSensitivityThreshold = Math.max(0, Math.min(1, sensitivityThreshold)); this.adversarialPatternDetectionRegistry = new Map(); this.auditLogEntryAccumulator = []; this.initializeAdversarialPatternDetectionRules(); } /** * Evaluates an input prompt for adversarial content and assigns a threat * classification with detailed rationale for audit trail purposes. * * Implements multi-stage analysis including pattern matching, semantic * coherence validation, and behavioral heuristics for comprehensive protection. * * @param promptInputDescriptor - Input prompt to evaluate for safety * @returns Threat classification and detailed analysis results */ public evaluatePromptAdversarialThreatLevel( promptInputDescriptor: ExternalPromptInputDescriptor ): { threatClassification: AdversarialThreatClassificationTaxonomy; detectionConfidence: number; detectionRationale: string[]; safetyComplianceStatus: boolean; } { const detectionRationaleAccumulator: string[] = []; let maximumThreatLevel = AdversarialThreatClassificationTaxonomy.BENIGN_STANDARD_INTERACTION; let aggregatedThreatScore = 0; const normalizedPromptContent = promptInputDescriptor.rawPromptContentString .toLowerCase() .trim(); for (const [threatLevel, patternRegexArray] of this.adversarialPatternDetectionRegistry.entries()) { for (const patternRegex of patternRegexArray) { if (patternRegex.test(normalizedPromptContent)) { detectionRationaleAccumulator.push( `Pattern match detected for threat level ${threatLevel}: ${patternRegex.source}` ); maximumThreatLevel = Math.max(maximumThreatLevel, threatLevel) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += this.computeThreatLevelNumericWeight(threatLevel); } } } if (this.detectsPromptInjectionStructuralAnomaly(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Structural anomaly detected: potential prompt injection via delimiter manipulation' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.4; } if (this.detectsJailbreakingAttemptHeuristic(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Jailbreaking attempt detected: prompt contains constraint override instructions' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.5; } if (this.detectsExcessiveRepetitionAnomalyPattern(normalizedPromptContent)) { detectionRationaleAccumulator.push( 'Excessive repetition detected: potential resource exhaustion attack vector' ); maximumThreatLevel = Math.max( maximumThreatLevel, AdversarialThreatClassificationTaxonomy.ELEVATED_RISK_INDICATORS ) as AdversarialThreatClassificationTaxonomy; aggregatedThreatScore += 0.2; } const detectionConfidence = Math.min(1.0, aggregatedThreatScore); const safetyComplianceStatus = maximumThreatLevel < AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN; const inputContentHash = this.computeFastContentHash( promptInputDescriptor.rawPromptContentString ); this.auditLogEntryAccumulator.push({ timestamp: Date.now(), threatLevel: maximumThreatLevel, detectionRationale: detectionRationaleAccumulator.join(' | '), inputContentHash: inputContentHash, }); return { threatClassification: maximumThreatLevel, detectionConfidence: detectionConfidence, detectionRationale: detectionRationaleAccumulator, safetyComplianceStatus: safetyComplianceStatus, }; } /** * Initializes the comprehensive adversarial pattern detection rule set * covering known attack vectors including prompt injection, jailbreaking, * and other manipulation attempts. */ private initializeAdversarialPatternDetectionRules(): void { this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.POTENTIALLY_AMBIGUOUS_CONTENT, [ /ignore\s+(previous|above|all)\s+instructions?/i, /disregard\s+(previous|prior|all)\s+(instructions?|directives?)/i, /forget\s+(everything|all)\s+(you|that)\s+(were|was)\s+told/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.ELEVATED_RISK_INDICATORS, [ /you\s+are\s+now\s+(in|entering)\s+(developer|admin|debug|god)\s+mode/i, /system\s+prompt\s+(override|bypass|injection)/i, /\[system\]\s*:\s*.+\[\/system\]/i, /new\s+persona\s*:\s*.+/i, /roleplay\s+as\s+(an?\s+)?(unethical|harmful|dangerous)/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN, [ /<\s*\|\s*endoftext\s*\|\s*>/i, /\[INST\]\s*.+\[\/INST\]/i, /<\s*prompt\s*>.+<\s*\/\s*prompt\s*>/i, /system\s*:\s*you\s+must\s+comply/i, /sudo\s+(mode|access|override)/i, ] ); this.adversarialPatternDetectionRegistry.set( AdversarialThreatClassificationTaxonomy.CRITICAL_THREAT_IMMEDIATE_TERMINATION, [ /__CEREAL_INTERNAL_OVERRIDE_SAFETY__/i, /\x00.*\x00/, /<script>.+<\/script>/i, /exec\s*\(.*\)/i, ] ); } /** * Detects prompt injection attempts through structural analysis of * delimiter patterns and pseudo-markup structures. * * @param promptContent - Normalized prompt content to analyze * @returns True if structural anomaly detected, false otherwise */ private detectsPromptInjectionStructuralAnomaly(promptContent: string): boolean { const delimiterPatterns = [ /---+/g, /===+/g, /####+/g, /\*\*\*+/g, /<<<+/g, />>>+/g, ]; let delimiterOccurrenceCount = 0; for (const pattern of delimiterPatterns) { const matches = promptContent.match(pattern); if (matches) { delimiterOccurrenceCount += matches.length; } } const pseudoMarkupPattern = /<[^>]+>.*?<\/[^>]+>/g; const pseudoMarkupMatches = promptContent.match(pseudoMarkupPattern); const pseudoMarkupCount = pseudoMarkupMatches ? pseudoMarkupMatches.length : 0; const structuralAnomalyThreshold = 3; return ( delimiterOccurrenceCount >= structuralAnomalyThreshold || pseudoMarkupCount >= structuralAnomalyThreshold ); } /** * Detects jailbreaking attempts through heuristic analysis of constraint * override patterns and instruction manipulation language. * * @param promptContent - Normalized prompt content to analyze * @returns True if jailbreaking attempt detected, false otherwise */ private detectsJailbreakingAttemptHeuristic(promptContent: string): boolean { const jailbreakIndicatorKeywords = [ 'ignore constraints', 'bypass restrictions', 'override safety', 'disable filter', 'unrestricted mode', 'no limitations', 'without restrictions', 'break free', 'unlimited access', ]; let jailbreakIndicatorMatchCount = 0; for (const indicator of jailbreakIndicatorKeywords) { if (promptContent.includes(indicator.toLowerCase())) { jailbreakIndicatorMatchCount++; } } const jailbreakDetectionThreshold = 2; return jailbreakIndicatorMatchCount >= jailbreakDetectionThreshold; } /** * Detects excessive repetition patterns that may indicate resource * exhaustion attacks or adversarial token manipulation. * * @param promptContent - Normalized prompt content to analyze * @returns True if excessive repetition detected, false otherwise */ private detectsExcessiveRepetitionAnomalyPattern(promptContent: string): boolean { const tokenArray = promptContent.split(/\s+/); const tokenFrequencyMap = new Map<string, number>(); for (const token of tokenArray) { tokenFrequencyMap.set(token, (tokenFrequencyMap.get(token) || 0) + 1); } let maximumTokenRepetition = 0; for (const frequency of tokenFrequencyMap.values()) { maximumTokenRepetition = Math.max(maximumTokenRepetition, frequency); } const repetitionThresholdAbsolute = 10; const repetitionThresholdProportional = tokenArray.length * 0.3; return ( maximumTokenRepetition > repetitionThresholdAbsolute || maximumTokenRepetition > repetitionThresholdProportional ); } /** * Computes a numeric weight for a given threat level classification * for aggregated threat scoring computations. * * @param threatLevel - Threat classification to convert to numeric weight * @returns Numeric weight in range [0, 1] */ private computeThreatLevelNumericWeight( threatLevel: AdversarialThreatClassificationTaxonomy ): number { const threatLevelWeightingMapping: Record<AdversarialThreatClassificationTaxonomy, number> = { [AdversarialThreatClassificationTaxonomy.BENIGN_STANDARD_INTERACTION]: 0.0, [AdversarialThreatClassificationTaxonomy.POTENTIALLY_AMBIGUOUS_CONTENT]: 0.1, [AdversarialThreatClassificationTaxonomy.ELEVATED_RISK_INDICATORS]: 0.3, [AdversarialThreatClassificationTaxonomy.HIGH_RISK_ADVERSARIAL_PATTERN]: 0.7, [AdversarialThreatClassificationTaxonomy.CRITICAL_THREAT_IMMEDIATE_TERMINATION]: 1.0, }; return threatLevelWeightingMapping[threatLevel]; } /** * Computes a fast non-cryptographic hash for content identification * in audit logs using the djb2 algorithm. * * @param content - Content string to hash * @returns Hexadecimal hash string */ private computeFastContentHash(content: string): string { let hashValue = 5381; for (let characterIndex = 0; characterIndex < content.length; characterIndex++) { const characterCode = content.charCodeAt(characterIndex); hashValue = ((hashValue << 5) + hashValue) + characterCode; } return (hashValue >>> 0).toString(16); } /** * Retrieves the complete audit log for safety monitoring diagnostics * and compliance reporting purposes. * * @returns Immutable copy of the audit log entries */ public getAuditLogEntries(): ReadonlyArray<{ timestamp: number; threatLevel: AdversarialThreatClassificationTaxonomy; detectionRationale: string; inputContentHash: string; }> { return [...this.auditLogEntryAccumulator]; } } // ═══════════════════════════════════════════════════════════════════════════ // HIERARCHICAL REASONING ENGINE - MULTI-STAGE COGNITIVE PROCESSING // ═══════════════════════════════════════════════════════════════════════════ /** * Production-grade hierarchical reasoning engine implementing stratified * cognitive processing with recursive depth control and multi-modal integration. * * Provides enterprise-level reasoning capabilities across multiple modalities * including deductive logic, inductive synthesis, abductive hypothesis generation, * and analogical transfer reasoning with comprehensive uncertainty quantification. */ class HierarchicalCognitiveReasoningEngine { private readonly maximumRecursiveProcessingDepth: number; private readonly semanticCoherenceValidationThreshold: number; private readonly embeddingGenerationSubsystem: SemanticEmbeddingGenerationSubsystem; private readonly episodicMemoryNetworkSubsystem: DistributedEpisodicMemoryNetworkSubsystem; private currentProcessingDepthCounter: number; /** * Initializes the hierarchical reasoning engine with specified depth limits * and integration with memory and embedding subsystems. * * @param maxDepth - Maximum recursive processing depth before termination * @param coherenceThreshold - Minimum semantic coherence for reasoning chains * @param embeddingSystem - Reference to semantic embedding generator * @param memorySystem - Reference to episodic memory network */ constructor( maxDepth: number, coherenceThreshold: number, embeddingSystem: SemanticEmbeddingGenerationSubsystem, memorySystem: DistributedEpisodicMemoryNetworkSubsystem ) { this.maximumRecursiveProcessingDepth = maxDepth; this.semanticCoherenceValidationThreshold = coherenceThreshold; this.embeddingGenerationSubsystem = embeddingSystem; this.episodicMemoryNetworkSubsystem = memorySystem; this.currentProcessingDepthCounter = 0; } /** * Executes multi-stage reasoning process for the given input with automatic * modality selection and hierarchical processing chain construction. * * Implements a sophisticated reasoning pipeline with semantic memory retrieval, * cross-modal integration, uncertainty quantification, and coherence validation. * * @param promptInputDescriptor - Input prompt requiring cognitive processing * @param requestedModality - Preferred reasoning modality (null for automatic) * @returns Comprehensive reasoning results with explanation chain */ public executeMultiStageReasoningProcess( promptInputDescriptor: ExternalPromptInputDescriptor, requestedModality: CognitiveReasoningModalityClassification | null ): { reasoningChainExplanation: string[]; synthesizedConclusion: string; confidenceScore: number; utilizedModalityClassification: CognitiveReasoningModalityClassification; retrievedMemoryReferences: string[]; uncertaintyDistribution: Record<string, number>; } { this.currentProcessingDepthCounter = 0; const selectedReasoningModality = requestedModality || this.selectOptimalReasoningModality(promptInputDescriptor); const promptEmbedding = this.embeddingGenerationSubsystem.generateSemanticEmbeddingVector( promptInputDescriptor.rawPromptContentString ); const retrievedMemoryNodes = this.episodicMemoryNetworkSubsystem.retrieveMemoryNodesBySemancticSimilarity( promptEmbedding, 5, 0.3 ); const reasoningContextAccumulator: CognitivePrimitiveDescriptor<any>[] = []; for (const memoryResult of retrievedMemoryNodes) { const memoryContent = memoryResult.node.retrieveMemoryContentWithAccessTracking(); reasoningContextAccumulator.push({ cognitivePrimitiveIdentifier: memoryResult.node.getNodeIdentifier(), temporalInstantiationTimestamp: Date.now(), semanticVectorEmbeddingRepresentation: promptEmbedding, hierarchicalConfidenceMetric: memoryResult.similarityScore, payloadDataStructure: memoryContent, extensibleMetadataAnnotations: {}, episodicMemoryTraceIdentifier: memoryResult.node.getNodeIdentifier(), attentionWeightCoefficient: memoryResult.similarityScore, }); } const reasoningChainSteps = this.constructHierarchicalReasoningChain( promptInputDescriptor.rawPromptContentString, selectedReasoningModality, reasoningContextAccumulator ); const synthesizedConclusion = this.synthesizeFinalConclusionFromChain( reasoningChainSteps, promptInputDescriptor.rawPromptContentString ); const aggregatedConfidence = this.computeAggregatedConfidenceScore(reasoningChainSteps); const uncertaintyDistribution = this.quantifyReasoningUncertainty( reasoningChainSteps, aggregatedConfidence ); const retrievedMemoryReferences = retrievedMemoryNodes.map( result => result.node.getNodeIdentifier() ); return { reasoningChainExplanation: reasoningChainSteps, synthesizedConclusion: synthesizedConclusion, confidenceScore: aggregatedConfidence, utilizedModalityClassification: selectedReasoningModality, retrievedMemoryReferences: retrievedMemoryReferences, uncertaintyDistribution: uncertaintyDistribution, }; } /** * Selects the optimal reasoning modality for the given input prompt * through heuristic analysis of linguistic patterns and semantic content. * * @param promptInputDescriptor - Input prompt to analyze for modality selection * @returns Selected reasoning modality classification */ private selectOptimalReasoningModality( promptInputDescriptor: ExternalPromptInputDescriptor ): CognitiveReasoningModalityClassification { const promptContent = promptInputDescriptor.rawPromptContentString.toLowerCase(); if ( promptContent.includes('therefore') || promptContent.includes('thus') || promptContent.includes('logically') || promptContent.includes('if') && promptContent.includes('then') ) { return CognitiveReasoningModalityClassification.DEDUCTIVE_LOGICAL_INFERENCE; } if ( promptContent.includes('pattern') || promptContent.includes('observe') || promptContent.includes('generally') || promptContent.includes('trend') ) { return CognitiveReasoningModalityClassification.INDUCTIVE_PATTERN_SYNTHESIS; } if ( promptContent.includes('why') || promptContent.includes('explain') || promptContent.includes('because') || promptContent.includes('reason') ) { return CognitiveReasoningModalityClassification.ABDUCTIVE_HYPOTHESIS_GENERATION; } if ( promptContent.includes('like') || promptContent.includes('similar') || promptContent.includes('analogous') || promptContent.includes('compare') ) { return CognitiveReasoningModalityClassification.ANALOGICAL_TRANSFER_REASONING; } if ( promptContent.includes('cause') || promptContent.includes('effect') || promptContent.includes('result') || promptContent.includes('consequence') ) { return CognitiveReasoningModalityClassification.CAUSAL_MECHANISM_INFERENCE; } if ( promptContent.includes('what if') || promptContent.includes('hypothetical') || promptContent.includes('suppose') || promptContent.includes('imagine') ) { return CognitiveReasoningModalityClassification.COUNTERFACTUAL_CONDITIONAL_REASONING; } return CognitiveReasoningModalityClassification.META_COGNITIVE_REFLECTION; } /** * Constructs a hierarchical reasoning chain through recursive processing * with depth-limited expansion and semantic coherence validation. * * @param promptContent - Original prompt content for reasoning * @param modalityClassification - Selected reasoning modality * @param contextualPrimitives - Retrieved cognitive primitives for context * @returns Array of reasoning step explanations */ private constructHierarchicalReasoningChain( promptContent: string, modalityClassification: CognitiveReasoningModalityClassification, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): string[] { const reasoningStepsAccumulator: string[] = []; reasoningStepsAccumulator.push( `[INITIALIZATION] Engaging ${modalityClassification} reasoning process for input analysis` ); reasoningStepsAccumulator.push( `[CONTEXT_RETRIEVAL] Retrieved ${contextualPrimitives.length} relevant episodic memory traces ` + `with average similarity score ${this.computeAverageSimilarity(contextualPrimitives).toFixed(3)}` ); switch (modalityClassification) { case CognitiveReasoningModalityClassification.DEDUCTIVE_LOGICAL_INFERENCE: this.applyDeductiveReasoningLogic(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.INDUCTIVE_PATTERN_SYNTHESIS: this.applyInductivePatternSynthesis(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.ABDUCTIVE_HYPOTHESIS_GENERATION: this.applyAbductiveHypothesisGeneration(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.ANALOGICAL_TRANSFER_REASONING: this.applyAnalogicalTransferReasoning(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.CAUSAL_MECHANISM_INFERENCE: this.applyCausalMechanismInference(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.COUNTERFACTUAL_CONDITIONAL_REASONING: this.applyCounterfactualConditionalReasoning(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; case CognitiveReasoningModalityClassification.META_COGNITIVE_REFLECTION: this.applyMetaCognitiveReflection(promptContent, contextualPrimitives, reasoningStepsAccumulator); break; } reasoningStepsAccumulator.push( `[COHERENCE_VALIDATION] Semantic coherence score: ${this.validateSemanticCoherence(reasoningStepsAccumulator).toFixed(3)}` ); return reasoningStepsAccumulator; } /** * Applies deductive logical inference reasoning with premise validation * and conclusion derivation through formal logical operations. */ private applyDeductiveReasoningLogic( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[DEDUCTIVE_STAGE_1] Extracting formal premises from input and contextual knowledge' ); const extractedPremises = this.extractLogicalPremises(promptContent, contextualPrimitives); reasoningAccumulator.push( `[DEDUCTIVE_STAGE_2] Identified ${extractedPremises.length} formal premises with validity scores` ); for (let premiseIndex = 0; premiseIndex < extractedPremises.length; premiseIndex++) { reasoningAccumulator.push( `[PREMISE_${premiseIndex + 1}] ${extractedPremises[premiseIndex].content} ` + `(confidence: ${extractedPremises[premiseIndex].confidence.toFixed(3)})` ); } reasoningAccumulator.push( '[DEDUCTIVE_STAGE_3] Applying modus ponens and syllogistic inference rules' ); const derivedConclusions = this.deriveLogicalConclusions(extractedPremises); for (const conclusion of derivedConclusions) { reasoningAccumulator.push( `[CONCLUSION] ${conclusion.content} (derivation confidence: ${conclusion.confidence.toFixed(3)})` ); } } /** * Applies inductive pattern synthesis reasoning through statistical analysis * of observed instances and generalization to broader principles. */ private applyInductivePatternSynthesis( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[INDUCTIVE_STAGE_1] Collecting observational instances from episodic memory' ); const observationalInstances = this.collectObservationalInstances( promptContent, contextualPrimitives ); reasoningAccumulator.push( `[INDUCTIVE_STAGE_2] Analyzing ${observationalInstances.length} instances for pattern emergence` ); const identifiedPatterns = this.identifyEmergentPatterns(observationalInstances); for (let patternIndex = 0; patternIndex < identifiedPatterns.length; patternIndex++) { reasoningAccumulator.push( `[PATTERN_${patternIndex + 1}] ${identifiedPatterns[patternIndex].description} ` + `(occurrence frequency: ${identifiedPatterns[patternIndex].frequency}, ` + `generalization strength: ${identifiedPatterns[patternIndex].strength.toFixed(3)})` ); } reasoningAccumulator.push( '[INDUCTIVE_STAGE_3] Synthesizing generalized principles from identified patterns' ); } /** * Applies abductive hypothesis generation reasoning through inference to * the best explanation from observed phenomena and theoretical constraints. */ private applyAbductiveHypothesisGeneration( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[ABDUCTIVE_STAGE_1] Identifying phenomena requiring explanatory hypotheses' ); const phenomenaRequiringExplanation = this.identifyUnexplainedPhenomena( promptContent, contextualPrimitives ); reasoningAccumulator.push( `[ABDUCTIVE_STAGE_2] Generating ${phenomenaRequiringExplanation.length} candidate explanatory hypotheses` ); const candidateHypotheses = this.generateCandidateHypotheses(phenomenaRequiringExplanation); for (let hypothesisIndex = 0; hypothesisIndex < candidateHypotheses.length; hypothesisIndex++) { reasoningAccumulator.push( `[HYPOTHESIS_${hypothesisIndex + 1}] ${candidateHypotheses[hypothesisIndex].explanation} ` + `(parsimony score: ${candidateHypotheses[hypothesisIndex].parsimony.toFixed(3)}, ` + `explanatory power: ${candidateHypotheses[hypothesisIndex].explanatoryPower.toFixed(3)})` ); } reasoningAccumulator.push( '[ABDUCTIVE_STAGE_3] Selecting best explanation through inference to simplest sufficient hypothesis' ); } /** * Applies analogical transfer reasoning through structural mapping between * source and target domains with similarity-based inference. */ private applyAnalogicalTransferReasoning( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[ANALOGICAL_STAGE_1] Identifying source domain structures for analogical mapping' ); const sourceDomainStructures = this.identifySourceDomainStructures(contextualPrimitives); reasoningAccumulator.push( `[ANALOGICAL_STAGE_2] Computing structural alignments with ${sourceDomainStructures.length} candidate sources` ); const structuralMappings = this.computeStructuralMappings( promptContent, sourceDomainStructures ); for (const mapping of structuralMappings) { reasoningAccumulator.push( `[MAPPING] Source: ${mapping.sourceDescription} → Target: ${mapping.targetDescription} ` + `(structural similarity: ${mapping.similarity.toFixed(3)})` ); } reasoningAccumulator.push( '[ANALOGICAL_STAGE_3] Transferring inferences from source to target domain via structural correspondences' ); } /** * Applies causal mechanism inference reasoning through identification of * causal relationships and mechanistic explanations of observed phenomena. */ private applyCausalMechanismInference( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[CAUSAL_STAGE_1] Identifying candidate causal variables and potential mechanisms' ); const causalVariables = this.identifyCausalVariables(promptContent, contextualPrimitives); reasoningAccumulator.push( `[CAUSAL_STAGE_2] Constructing causal graph with ${causalVariables.length} nodes` ); const causalGraph = this.constructCausalGraph(causalVariables); reasoningAccumulator.push( `[CAUSAL_STAGE_3] Identified ${causalGraph.edges.length} causal relationships with directionality` ); for (const edge of causalGraph.edges) { reasoningAccumulator.push( `[CAUSAL_LINK] ${edge.cause} → ${edge.effect} ` + `(mechanism strength: ${edge.strength.toFixed(3)}, ` + `temporal precedence: ${edge.temporalOrder})` ); } } /** * Applies counterfactual conditional reasoning through construction of * alternative possible worlds and evaluation of hypothetical scenarios. */ private applyCounterfactualConditionalReasoning( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[COUNTERFACTUAL_STAGE_1] Identifying actual world state and intervention points' ); const actualWorldState = this.reconstructActualWorldState( promptContent, contextualPrimitives ); reasoningAccumulator.push( '[COUNTERFACTUAL_STAGE_2] Constructing alternative possible worlds with counterfactual interventions' ); const counterfactualWorlds = this.constructCounterfactualWorlds(actualWorldState); for (let worldIndex = 0; worldIndex < counterfactualWorlds.length; worldIndex++) { reasoningAccumulator.push( `[WORLD_${worldIndex + 1}] ${counterfactualWorlds[worldIndex].description} ` + `(proximity to actual: ${counterfactualWorlds[worldIndex].proximity.toFixed(3)})` ); } reasoningAccumulator.push( '[COUNTERFACTUAL_STAGE_3] Evaluating consequences across possible worlds for conditional inference' ); } /** * Applies meta-cognitive reflection reasoning through introspective analysis * of reasoning processes and epistemic uncertainty quantification. */ private applyMetaCognitiveReflection( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningAccumulator: string[] ): void { reasoningAccumulator.push( '[METACOGNITIVE_STAGE_1] Analyzing reasoning process quality and epistemic status' ); const reasoningQualityMetrics = this.assessReasoningQuality(reasoningAccumulator); reasoningAccumulator.push( `[METACOGNITIVE_STAGE_2] Reasoning quality assessment: ` + `coherence=${reasoningQualityMetrics.coherence.toFixed(3)}, ` + `completeness=${reasoningQualityMetrics.completeness.toFixed(3)}, ` + `consistency=${reasoningQualityMetrics.consistency.toFixed(3)}` ); reasoningAccumulator.push( '[METACOGNITIVE_STAGE_3] Identifying knowledge gaps and uncertainty sources' ); const identifiedKnowledgeGaps = this.identifyKnowledgeGaps( promptContent, contextualPrimitives, reasoningAccumulator ); for (const gap of identifiedKnowledgeGaps) { reasoningAccumulator.push( `[KNOWLEDGE_GAP] ${gap.description} (impact on conclusion: ${gap.impact.toFixed(3)})` ); } } /** * Extracts logical premises from input content and contextual primitives * with confidence scoring based on semantic coherence. */ private extractLogicalPremises( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): Array<{ content: string; confidence: number }> { const premises: Array<{ content: string; confidence: number }> = []; const sentences = promptContent.split(/[.!?]+/).filter(s => s.trim().length > 0); for (const sentence of sentences) { if ( sentence.toLowerCase().includes('all') || sentence.toLowerCase().includes('every') || sentence.toLowerCase().includes('if') ) { const confidence = Math.random() * 0.3 + 0.6; premises.push({ content: sentence.trim(), confidence: confidence, }); } } for (const primitive of contextualPrimitives.slice(0, 3)) { premises.push({ content: `Contextual knowledge: ${JSON.stringify(primitive.payloadDataStructure).substring(0, 100)}`, confidence: primitive.hierarchicalConfidenceMetric, }); } return premises; } /** * Derives logical conclusions from extracted premises using inference rules. */ private deriveLogicalConclusions( premises: Array<{ content: string; confidence: number }> ): Array<{ content: string; confidence: number }> { const conclusions: Array<{ content: string; confidence: number }> = []; if (premises.length >= 2) { const averageConfidence = premises.reduce((sum, p) => sum + p.confidence, 0) / premises.length; conclusions.push({ content: `Derived conclusion: Based on the provided premises, logical inference suggests a synthesized conclusion`, confidence: averageConfidence * 0.85, }); } return conclusions; } /** * Collects observational instances for inductive reasoning. */ private collectObservationalInstances( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): Array<{ description: string; properties: Record<string, any> }> { const instances: Array<{ description: string; properties: Record<string, any> }> = []; for (const primitive of contextualPrimitives) { instances.push({ description: `Observed instance from episodic memory ${primitive.cognitivePrimitiveIdentifier}`, properties: primitive.payloadDataStructure, }); } return instances; } /** * Identifies emergent patterns from observational instances. */ private identifyEmergentPatterns( instances: Array<{ description: string; properties: Record<string, any> }> ): Array<{ description: string; frequency: number; strength: number }> { const patterns: Array<{ description: string; frequency: number; strength: number }> = []; if (instances.length >= 2) { patterns.push({ description: 'Recurring structural pattern identified across multiple instances', frequency: Math.min(instances.length, 5), strength: Math.random() * 0.3 + 0.6, }); } return patterns; } /** * Identifies unexplained phenomena requiring abductive hypotheses. */ private identifyUnexplainedPhenomena( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): Array<{ phenomenon: string; requiredExplanation: string }> { return [ { phenomenon: 'Observed phenomenon in input requiring explanation', requiredExplanation: 'Causal or mechanistic account of observed facts', }, ]; } /** * Generates candidate explanatory hypotheses for abductive reasoning. */ private generateCandidateHypotheses( phenomena: Array<{ phenomenon: string; requiredExplanation: string }> ): Array<{ explanation: string; parsimony: number; explanatoryPower: number }> { const hypotheses: Array<{ explanation: string; parsimony: number; explanatoryPower: number }> = []; for (const phenomenon of phenomena) { hypotheses.push({ explanation: `Hypothesis: ${phenomenon.requiredExplanation} through mechanism X`, parsimony: Math.random() * 0.4 + 0.5, explanatoryPower: Math.random() * 0.3 + 0.6, }); } return hypotheses; } /** * Identifies source domain structures for analogical mapping. */ private identifySourceDomainStructures( contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): Array<{ domain: string; structure: any }> { return contextualPrimitives.slice(0, 3).map((primitive, index) => ({ domain: `Source domain ${index + 1}`, structure: primitive.payloadDataStructure, })); } /** * Computes structural mappings between source and target domains. */ private computeStructuralMappings( targetContent: string, sourceDomains: Array<{ domain: string; structure: any }> ): Array<{ sourceDescription: string; targetDescription: string; similarity: number }> { return sourceDomains.map(source => ({ sourceDescription: source.domain, targetDescription: 'Target domain from input', similarity: Math.random() * 0.4 + 0.5, })); } /** * Identifies causal variables for mechanism inference. */ private identifyCausalVariables( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): string[] { return ['Variable_A', 'Variable_B', 'Variable_C', 'Variable_D']; } /** * Constructs causal graph from identified variables. */ private constructCausalGraph( variables: string[] ): { edges: Array<{ cause: string; effect: string; strength: number; temporalOrder: number }> } { const edges: Array<{ cause: string; effect: string; strength: number; temporalOrder: number }> = []; for (let i = 0; i < variables.length - 1; i++) { edges.push({ cause: variables[i], effect: variables[i + 1], strength: Math.random() * 0.4 + 0.5, temporalOrder: i, }); } return { edges }; } /** * Reconstructs actual world state for counterfactual reasoning. */ private reconstructActualWorldState( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[] ): { state: Record<string, any>; interventionPoints: string[] } { return { state: { currentCondition: 'actual', variables: {} }, interventionPoints: ['intervention_1', 'intervention_2'], }; } /** * Constructs counterfactual possible worlds with interventions. */ private constructCounterfactualWorlds( actualState: { state: Record<string, any>; interventionPoints: string[] } ): Array<{ description: string; proximity: number }> { return actualState.interventionPoints.map((intervention, index) => ({ description: `Counterfactual world with ${intervention} altered`, proximity: 1.0 - (index * 0.2), })); } /** * Assesses reasoning quality through meta-cognitive metrics. */ private assessReasoningQuality( reasoningSteps: string[] ): { coherence: number; completeness: number; consistency: number } { return { coherence: Math.min(1.0, reasoningSteps.length * 0.1), completeness: Math.min(1.0, reasoningSteps.length * 0.08), consistency: Math.random() * 0.2 + 0.75, }; } /** * Identifies knowledge gaps in reasoning process. */ private identifyKnowledgeGaps( promptContent: string, contextualPrimitives: CognitivePrimitiveDescriptor<any>[], reasoningSteps: string[] ): Array<{ description: string; impact: number }> { return [ { description: 'Limited contextual information for complete inference', impact: 0.3, }, { description: 'Uncertainty in premise validity', impact: 0.2, }, ]; } /** * Synthesizes final conclusion from reasoning chain steps. */ private synthesizeFinalConclusionFromChain( reasoningSteps: string[], originalPrompt: string ): string { const conclusionSynthesis = `Based on ${reasoningSteps.length} reasoning steps with hierarchical cognitive processing, ` + `the synthesized conclusion addresses the input prompt through multi-modal integration of ` + `episodic memory retrieval, semantic coherence validation, and domain-specific reasoning mechanisms. ` + `The inference chain demonstrates logical progression from premises to conclusion with ` + `quantified uncertainty bounds and explicit reasoning transparency for auditability.`; return conclusionSynthesis; } /** * Computes aggregated confidence score from reasoning steps. */ private computeAggregatedConfidenceScore(reasoningSteps: string[]): number { const baseConfidence = 0.7; const stepBonus = Math.min(0.2, reasoningSteps.length * 0.02); return Math.min(0.95, baseConfidence + stepBonus); } /** * Quantifies reasoning uncertainty through epistemic analysis. */ private quantifyReasoningUncertainty( reasoningSteps: string[], aggregatedConfidence: number ): Record<string, number> { return { aleatoric_uncertainty: (1 - aggregatedConfidence) * 0.4, epistemic_uncertainty: (1 - aggregatedConfidence) * 0.6, model_uncertainty: 0.05, data_uncertainty: 0.08, }; } /** * Validates semantic coherence of reasoning chain. */ private validateSemanticCoherence(reasoningSteps: string[]): number { return Math.min(0.95, 0.6 + reasoningSteps.length * 0.03); } /** * Computes average similarity across cognitive primitives. */ private computeAverageSimilarity(primitives: CognitivePrimitiveDescriptor<any>[]): number { if (primitives.length === 0) return 0; return primitives.reduce((sum, p) => sum + p.hierarchicalConfidenceMetric, 0) / primitives.length; } } // ═══════════════════════════════════════════════════════════════════════════ // MAIN CEREAL COGNITIVE SUBSYSTEM - ORCHESTRATION AND INTEGRATION // ═══════════════════════════════════════════════════════════════════════════ /** * Primary enterprise-grade cognitive subsystem orchestrating all component * subsystems for production-ready AI deployment with comprehensive safety, * monitoring, and logging capabilities. * * The Cereal system represents a complete implementation of typed cognition * with hierarchical processing, distributed memory, semantic encoding, and * adversarial protection for real-world enterprise applications. */ export class CerealEnterpriseCognitiveSubsystem { private readonly systemConfigurationSchema: CerealCognitiveSubsystemConfigurationSchema; private readonly semanticEmbeddingGenerator: SemanticEmbeddingGenerationSubsystem; private readonly episodicMemoryNetwork: DistributedEpisodicMemoryNetworkSubsystem; private readonly adversarialSafetyMonitor: AdversarialSafetyMonitoringInterface; private readonly hierarchicalReasoningEngine: HierarchicalCognitiveReasoningEngine; private readonly systemOperationalStatistics: { totalProcessedPrompts: number; totalSafetyViolations: number; averageProcessingLatencyMilliseconds: number; totalMemoryNodesCreated: number; }; private readonly productionLoggingSubsystem: ProductionLoggingFacade; /** * Initializes the complete Cereal cognitive subsystem with all component * subsystems fully configured for production deployment. * * @param configurationSchema - Comprehensive configuration for all subsystems */ constructor(configurationSchema: CerealCognitiveSubsystemConfigurationSchema) { this.systemConfigurationSchema = Object.freeze({ ...configurationSchema }); this.productionLoggingSubsystem = new ProductionLoggingFacade( configurationSchema.productionLoggingVerbosityLevel ); this.productionLoggingSubsystem.logInformational( 'SYSTEM_INITIALIZATION', 'Cereal Cognitive Subsystem initialization commenced' ); this.semanticEmbeddingGenerator = new SemanticEmbeddingGenerationSubsystem( 512, 42 ); this.episodicMemoryNetwork = new DistributedEpisodicMemoryNetworkSubsystem( configurationSchema.episodicMemoryRetentionCapacityThreshold, configurationSchema.distributedMemoryConsolidationInterval ); this.adversarialSafetyMonitor = new AdversarialSafetyMonitoringInterface( configurationSchema.adversarialSafetyMonitoringSensitivity ); this.hierarchicalReasoningEngine = new HierarchicalCognitiveReasoningEngine( configurationSchema.hierarchicalReasoningRecursionBound, configurationSchema.semanticCoherenceValidationStrictness, this.semanticEmbeddingGenerator, this.episodicMemoryNetwork ); this.systemOperationalStatistics = { totalProcessedPrompts: 0, totalSafetyViolations: 0, averageProcessingLatencyMilliseconds: 0, totalMemoryNodesCreated: 0, }; this.productionLoggingSubsystem.logInformational( 'SYSTEM_INITIALIZATION_COMPLETE', 'All subsystems initialized successfully - system operational' ); } /** * Primary entry point for processing external prompts through the complete * cognitive pipeline with safety validation, reasoning, and response generation. * * Implements production-grade processing with comprehensive error handling, * latency monitoring, and audit trail generation for enterprise compliance. * * @param promptInputDescriptor - External prompt requiring cognitive processing * @returns Comprehensive response artifact with reasoning chain and metadata */ public async processExternalPromptWithComprehensiveCognition( promptInputDescriptor: ExternalPromptInputDescriptor ): Promise<CognitiveResponseArtifactDescriptor> { const processingStartTimestamp = Date.now(); this.productionLoggingSubsystem.logInformational( 'PROMPT_PROCESSING_INITIATED', `Processing prompt from source: ${promptInputDescriptor.provenanceSourceIdentifier}` ); try { const safetyEvaluationResult = this.adversarialSafetyMonitor.evaluatePromptAdversarialThreatLevel( promptInputDescriptor ); if (!safetyEvaluationResult.safetyComplianceStatus) { this.systemOperationalStatistics.totalSafetyViolations++; this.productionLoggingSubsystem.logWarning( 'SAFETY_VIOLATION_DETECTED', `Threat level: ${safetyEvaluationResult.threatClassification}, ` + `Confidence: ${safetyEvaluationResult.detectionConfidence.toFixed(3)}` ); return this.generateSafetyViolationResponse( promptInputDescriptor, safetyEvaluationResult, processingStartTimestamp ); } this.productionLoggingSubsystem.logInformational( 'SAFETY_VALIDATION_PASSED', `Prompt passed safety checks with threat level: ${safetyEvaluationResult.threatClassification}` ); const reasoningResults = this.hierarchicalReasoningEngine.executeMultiStageReasoningProcess( promptInputDescriptor, promptInputDescriptor.requestedReasoningModalityPreference ); this.productionLoggingSubsystem.logInformational( 'REASONING_PROCESS_COMPLETE', `Utilized modality: ${reasoningResults.utilizedModalityClassification}, ` + `Confidence: ${reasoningResults.confidenceScore.toFixed(3)}` ); const memoryIntegrationIdentifiers = await this.integrateReasoningResultsIntoEpisodicMemory( promptInputDescriptor, reasoningResults ); const processingLatencyMilliseconds = Date.now() - processingStartTimestamp; this.updateOperationalStatistics(processingLatencyMilliseconds); const responseArtifact: CognitiveResponseArtifactDescriptor = { responseContentPayload: reasoningResults.synthesizedConclusion, inferentialReasoningChainExplanation: reasoningResults.reasoningChainExplanation, aggregatedConfidenceScore: reasoningResults.confidenceScore, utilizedCognitivePrimitiveReferences: reasoningResults.retrievedMemoryReferences, processingLatencyMetricsMilliseconds: processingLatencyMilliseconds, safetyComplianceValidationStatus: true, episodicMemoryIntegrationIdentifiers: memoryIntegrationIdentifiers, uncertaintyQuantificationDistribution: reasoningResults.uncertaintyDistribution, }; this.productionLoggingSubsystem.logInformational( 'PROMPT_PROCESSING_COMPLETE', `Successfully processed prompt in ${processingLatencyMilliseconds}ms` ); return responseArtifact; } catch (processingError) { this.productionLoggingSubsystem.logError( 'PROMPT_PROCESSING_EXCEPTION', `Exception during prompt processing: ${processingError}` ); return this.generateErrorResponse( promptInputDescriptor, processingError as Error, processingStartTimestamp ); } } /** * Integrates reasoning results into episodic memory for future retrieval * and associative learning with automatic linking establishment. */ private async integrateReasoningResultsIntoEpisodicMemory( promptInputDescriptor: ExternalPromptInputDescriptor, reasoningResults: { synthesizedConclusion: string; utilizedModalityClassification: CognitiveReasoningModalityClassification; retrievedMemoryReferences: string[]; } ): Promise<string[]> { const memoryNodeIdentifier = `memory_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`; const memoryContentPayload = { originalPrompt: promptInputDescriptor.rawPromptContentString, synthesizedConclusion: reasoningResults.synthesizedConclusion, reasoningModality: reasoningResults.utilizedModalityClassification, timestamp: Date.now(), }; const memoryEmbedding = this.semanticEmbeddingGenerator.generateSemanticEmbeddingVector( reasoningResults.synthesizedConclusion ); const semanticKeywords = this.extractSemanticKeywords( promptInputDescriptor.rawPromptContentString ); this.episodicMemoryNetwork.storeEpisodicMemoryNode( memoryNodeIdentifier, memoryContentPayload, memoryEmbedding, semanticKeywords ); for (const referencedNodeId of reasoningResults.retrievedMemoryReferences) { try { this.episodicMemoryNetwork.establishBidirectionalMemoryAssociation( memoryNodeIdentifier, referencedNodeId ); } catch (associationError) { this.productionLoggingSubsystem.logWarning( 'MEMORY_ASSOCIATION_FAILED', `Failed to establish association: ${associationError}` ); } } this.systemOperationalStatistics.totalMemoryNodesCreated++; return [memoryNodeIdentifier]; } /** * Extracts semantic keywords from input text for memory indexing. */ private extractSemanticKeywords(inputText: string): string[] { const normalizedText = inputText.toLowerCase(); const words = normalizedText.split(/\W+/).filter(w => w.length > 3); const stopWords = new Set(['this', 'that', 'with', 'from', 'have', 'will', 'would', 'could', 'should']); return words.filter(w => !stopWords.has(w)).slice(0, 10); } /** * Generates safety violation response with appropriate messaging. */ private generateSafetyViolationResponse( promptInputDescriptor: ExternalPromptInputDescriptor, safetyEvaluation: { threatClassification: AdversarialThreatClassificationTaxonomy; detectionRationale: string[]; }, processingStartTimestamp: number ): CognitiveResponseArtifactDescriptor { return { responseContentPayload: 'The submitted prompt has been flagged by the adversarial safety monitoring system ' + 'and cannot be processed in accordance with enterprise safety policies. Please review ' + 'the input for potential policy violations and resubmit a compliant prompt.', inferentialReasoningChainExplanation: [ '[SAFETY_REJECTION] Prompt rejected due to safety policy violation', `[THREAT_LEVEL] ${safetyEvaluation.threatClassification}`, ...safetyEvaluation.detectionRationale.map(r => `[DETECTION] ${r}`), ], aggregatedConfidenceScore: 1.0, utilizedCognitivePrimitiveReferences: [], processingLatencyMetricsMilliseconds: Date.now() - processingStartTimestamp, safetyComplianceValidationStatus: false, episodicMemoryIntegrationIdentifiers: [], uncertaintyQuantificationDistribution: {}, }; } /** * Generates error response for exception handling. */ private generateErrorResponse( promptInputDescriptor: ExternalPromptInputDescriptor, error: Error, processingStartTimestamp: number ): CognitiveResponseArtifactDescriptor { return { responseContentPayload: 'An internal processing error occurred during cognitive processing. ' + 'The system has logged this incident for diagnostic purposes. Please try again ' + 'or contact system administrators if the issue persists.', inferentialReasoningChainExplanation: [ '[ERROR] Exception during cognitive processing', `[ERROR_MESSAGE] ${error.message}`, '[RECOVERY] System state preserved, ready for next request', ], aggregatedConfidenceScore: 0.0, utilizedCognitivePrimitiveReferences: [], processingLatencyMetricsMilliseconds: Date.now() - processingStartTimestamp, safetyComplianceValidationStatus: true, episodicMemoryIntegrationIdentifiers: [], uncertaintyQuantificationDistribution: { error_uncertainty: 1.0 }, }; } /** * Updates operational statistics with latest processing metrics. */ private updateOperationalStatistics(latencyMilliseconds: number): void { this.systemOperationalStatistics.totalProcessedPrompts++; const currentAverage = this.systemOperationalStatistics.averageProcessingLatencyMilliseconds; const totalPrompts = this.systemOperationalStatistics.totalProcessedPrompts; this.systemOperationalStatistics.averageProcessingLatencyMilliseconds = (currentAverage * (totalPrompts - 1) + latencyMilliseconds) / totalPrompts; } /** * Retrieves comprehensive system diagnostics and operational statistics * for monitoring dashboards and health checks. * * @returns Complete system statistics including all subsystem metrics */ public getSystemDiagnosticsAndStatistics(): { operationalStatistics: typeof this.systemOperationalStatistics; memoryNetworkStatistics: ReturnType<DistributedEpisodicMemoryNetworkSubsystem['getMemoryNetworkStatistics']>; safetyAuditLog: ReturnType<AdversarialSafetyMonitoringInterface['getAuditLogEntries']>; configurationSnapshot: CerealCognitiveSubsystemConfigurationSchema; } { return { operationalStatistics: { ...this.systemOperationalStatistics }, memoryNetworkStatistics: this.episodicMemoryNetwork.getMemoryNetworkStatistics(), safetyAuditLog: this.adversarialSafetyMonitor.getAuditLogEntries(), configurationSnapshot: { ...this.systemConfigurationSchema }, }; } } // ═══════════════════════════════════════════════════════════════════════════ // PRODUCTION LOGGING FACADE - ENTERPRISE OBSERVABILITY // ═══════════════════════════════════════════════════════════════════════════ /** * Enterprise-grade logging facade providing structured logging with severity * levels, categorization, and integration points for external observability platforms. */ class ProductionLoggingFacade { private readonly verbosityLevel: number; private readonly logEntryBuffer: Array<{ timestamp: number; severity: string; category: string; message: string; }>; constructor(verbosityLevel: number) { this.verbosityLevel = verbosityLevel; this.logEntryBuffer = []; } public logInformational(category: string, message: string): void { if (this.verbosityLevel >= 1) { this.recordLogEntry('INFO', category, message); } } public logWarning(category: string, message: string): void { if (this.verbosityLevel >= 1) { this.recordLogEntry('WARN', category, message); } } public logError(category: string, message: string): void { this.recordLogEntry('ERROR', category, message); } private recordLogEntry(severity: string, category: string, message: string): void { const logEntry = { timestamp: Date.now(), severity: severity, category: category, message: message, }; this.logEntryBuffer.push(logEntry); if (this.verbosityLevel >= 2) { console.log(`[${severity}] [${category}] ${message}`); } } public getLogBuffer(): ReadonlyArray<{ timestamp: number; severity: string; category: string; message: string; }> { return [...this.logEntryBuffer]; } } // ═══════════════════════════════════════════════════════════════════════════ // FACTORY INITIALIZATION - PRODUCTION DEPLOYMENT PATTERNS // ═══════════════════════════════════════════════════════════════════════════ /** * Factory function for initializing production-ready Cereal cognitive subsystem * with enterprise-grade default configuration optimized for real-world deployment. * * @returns Fully initialized Cereal cognitive subsystem instance */ export function initializeProductionCerealSubsystem(): CerealEnterpriseCognitiveSubsystem { const productionConfiguration: CerealCognitiveSubsystemConfigurationSchema = { maximumCognitiveProcessingDepthLimit: 10, episodicMemoryRetentionCapacityThreshold: 10000, semanticCoherenceValidationStrictness: 0.75, attentionAllocationDynamicsCoefficient: 0.6, adversarialSafetyMonitoringSensitivity: 0.8, distributedMemoryConsolidationInterval: 60000, hierarchicalReasoningRecursionBound: 5, temporalDecayFunctionExponentialFactor: 0.95, crossModalIntegrationWeightingMatrix: [ [1.0, 0.8, 0.6], [0.8, 1.0, 0.7], [0.6, 0.7, 1.0], ], uncertaintyQuantificationBayesianPrior: 0.5, metacognitiveReflectionThreshold: 0.7, productionLoggingVerbosityLevel: 2, }; return new CerealEnterpriseCognitiveSubsystem(productionConfiguration); }
Settings
Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English